Ultrasound Volume Reconstruction From Freehand Scans Without Tracking

被引:11
作者
Guo, Hengtao [1 ,2 ]
Chao, Hanqing [2 ]
Xu, Sheng [5 ]
Wood, Bradford J. [5 ]
Wang, Jing [3 ,4 ]
Yan, Pingkun [6 ,7 ]
机构
[1] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY USA
[2] Rensselaer Polytech Inst, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY USA
[3] UT Southwestern Med Ctr, Adv Imaging & Informat Radiat Therapy AIRT lab, Dallas, TX USA
[4] UT Southwestern Med Ctr, Dept Radiat Oncol, Med Artificial Intelligence & Automat MAIA lab, Dallas, TX USA
[5] NIH, Ctr Intervent Oncol Radiol & Imaging Sci, Bethesda, MD USA
[6] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
[7] Rensselaer Polytech Inst, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA
基金
美国国家卫生研究院;
关键词
Ultrasonic imaging; Image reconstruction; Three-dimensional displays; Probes; Imaging; Speckle; Trajectory; Contrastive learning; deep learning; self-attention; ultrasound imaging; volume reconstruction; 3D ULTRASOUND; SPECKLE DECORRELATION; NETWORK; FUSION;
D O I
10.1109/TBME.2022.3206596
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Transrectal ultrasound is commonly used for guiding prostate cancer biopsy, where 3D ultrasound volume reconstruction is often desired. Current methods for 3D reconstruction from freehand ultrasound scans require external tracking devices to provide spatial information of an ultrasound transducer. This paper presents a novel deep learning approach for sensorless ultrasound volume reconstruction, which efficiently exploits content correspondence between ultrasound frames to reconstruct 3D volumes without external tracking. The underlying deep learning model, deep contextual-contrastive network (DC2-Net), utilizes self-attention to focus on the speckle-rich areas to estimate spatial movement and then minimizes a margin ranking loss for contrastive feature learning. A case-wise correlation loss over the entire input video helps further smooth the estimated trajectory. We train and validate DC2-Net on two independent datasets, one containing 619 transrectal scans and the other having 100 transperineal scans. Our proposed approach attained superior performance compared with other methods, with a drift rate of 9.64% and a prostate Dice of 0.89. The promising results demonstrate the capability of deep neural networks for universal ultrasound volume reconstruction from freehand 2D ultrasound scans without tracking information.
引用
收藏
页码:970 / 979
页数:10
相关论文
共 46 条
  • [1] A Generalized Correlation-Based Model for Out-of-Plane Motion Estimation in Freehand Ultrasound
    Afsham, Narges
    Najafi, Mohammad
    Abolmaesumi, Purang
    Rohling, Robert
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (01) : 186 - 199
  • [2] [Anonymous], 2010, P 13 INT C ARTIFICIA
  • [3] Deep Recurrent Neural Networks for Prostate Cancer Detection: Analysis of Temporal Enhanced Ultrasound
    Azizi, Shekoofeh
    Bayat, Sharareh
    Yan, Pingkun
    Tahmasebi, Amir
    Kwak, Jin Tae
    Xu, Sheng
    Turkbey, Baris
    Choyke, Peter
    Pinto, Peter
    Wood, Bradford
    Mousavi, Parvin
    Abolmaesumi, Purang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (12) : 2695 - 2703
  • [4] Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473, DOI 10.48550/ARXIV.1409.0473]
  • [5] 3-D US frame positioning using speckle decorrelation and image registration
    Chang, RF
    Wu, WJ
    Chen, DR
    Chen, WM
    Shu, W
    Lee, JH
    Jeng, LB
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2003, 29 (06) : 801 - 812
  • [6] Chen JF, 1997, INT J IMAG SYST TECH, V8, P38, DOI 10.1002/(SICI)1098-1098(1997)8:1<38::AID-IMA5>3.0.CO
  • [7] 2-U
  • [8] Reconstruction of freehand 3D ultrasound based on kernel regression
    Chen, Xiankang
    Wen, Tiexiang
    Li, Xingmin
    Qin, Wenjian
    Lan, Donglai
    Pan, Weizhou
    Gu, Jia
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2014, 13
  • [9] Learning a similarity metric discriminatively, with application to face verification
    Chopra, S
    Hadsell, R
    LeCun, Y
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 539 - 546
  • [10] Daoud MI, 2015, 2015 INTERNATIONAL CONFERENCE ON OPEN SOURCE SOFTWARE COMPUTING (OSSCOM)