A simple proof of reflexivity and separability of N1,P Sobolev spaces

被引:4
作者
Alvarado, Ryan [1 ]
Hajlasz, Piotr [1 ]
Maly, Lukas [2 ,3 ]
机构
[1] Amherst Coll, Dept Math & Stat, 405 Seeley Mudd, Amherst, MA 01002 USA
[2] Univ Pittsburgh, Dept Math, Thackeray Hall, Pittsburgh, PA 15260 USA
[3] Linkoping Univ, Dept Sci & Technol, SE-60174 Norrkoping, Sweden
来源
ANNALES FENNICI MATHEMATICI | 2023年 / 48卷 / 01期
关键词
Sobolev spaces; analysis on metric spaces; Poincar? inequality; uniform convexity;
D O I
10.54330/afm.127419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an elementary proof of a well-known theorem of Cheeger which states that if a metric-measure space X supports a p-Poincare inequality, then the N1,P(X) Sobolev space is reflexive and separable whenever p is an element of (1, infinity). We also prove separability of the space when p = 1. Our proof is based on a straightforward construction of an equivalent norm on N1,P(X), p is an element of [1, infinity), that is uniformly convex when p is an element of (1, infinity). Finally, we explicitly construct a functional that is pointwise comparable to the minimal p-weak upper gradient, when p is an element of (1, infinity).
引用
收藏
页码:255 / 275
页数:21
相关论文
共 17 条
[1]  
Ambrosio L, 2015, ADV STU P M, V67, P1
[2]  
[Anonymous], 2007, Springer Monographs in Mathematics
[3]  
Bjorn A, 2011, EMS TRACTS MATH, V17, P1, DOI 10.4171/099
[4]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[5]  
Clarkson JA, 1936, T AM MATH SOC, V40, P396
[6]  
Durand-Cartagena E., 2013, J ANAL-INDIA, V21, P73
[7]  
ERIKSSON-BIQUE S., ANAL PDE
[8]   ALTERNATIVE PROOF OF KEITH-ZHONG SELF-IMPROVEMENT AND CONNECTIVITY [J].
Eriksson-Bique, Sylvester .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 :407-425
[9]   Definitions of Sobolev classes on metric spaces [J].
Franchi, B ;
Hajlasz, P ;
Koskela, P .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (06) :1903-+
[10]  
Hajlasz P, 1996, POTENTIAL ANAL, V5, P403