A 4.5-7.5 GHz highly integrated transceiver front-end for UWB application

被引:1
作者
Hu, Jianquan [1 ]
Ma, Kaixue [1 ]
机构
[1] Tianjin Univ, Sch Microelect, Tianjin 300072, Peoples R China
基金
中国博士后科学基金;
关键词
GaAs pseudomorphic high electron-mobility transistor (pHEMT); low-noise amplifier (LNA); monolithic microwave integrated circuit (MMIC); power amplifier; transceiver front-end; UWB;
D O I
10.1002/mop.33509
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, a 4.5-7.5 GHz highly integrated transceiver front-end, incorporating two single-pole three-throw (SP3T) transmit/receive (T/R) switches, a low-noise amplifier (LNA), a power amplifier (PA), and a bypass path for UWB positioning and communication systems applications, is reported. The mode switches among transmitting, receiving, and bypass are achieved by utilizing two control voltages through integrating a 2-4 decoder. Meanwhile, to ensure low-power dissipation in different modes, the LNA and PA work in different modes (enable or disable) for transmitting and receiving status while both the LNA and PA are disabled for bypass mode. Fabricated by using 0.5-mu m GaAs pHEMT process, the presented FEM achieves 20-dB gain, and 2.5-dB typical noise figure for receiving mode, 8-dB gain, and 16-dBm OP1dB for transmitting mode, and 1.8 dB insertion loss for bypass mode, with a compact chip area of 1.5 mm x 1.7 mm. To the best of authors' knowledge, the presented circuits are the highest integrated and smallest chip area transceiver front-end for UWB application among all previously reported UWB-related RF front-end chips.
引用
收藏
页码:441 / 446
页数:6
相关论文
共 16 条
[1]   A 3-to-10GHz 180pJ/b IEEE802.15.4z/4a IR-UWB Coherent Polar Transmitter in 28nm CMOS with Asynchronous Amplitude Pulse-Shaping and Injection-Locked Phase Modulation [J].
Allebes, Erwin ;
Singh, Gaurav ;
He, Yuming ;
Tiurin, Evgenii ;
Mateman, Paul ;
Ding, Ming ;
Dijkhuis, Johan ;
Van Schaik, Gert-Jan ;
Bechthum, Elbert ;
van den Heuvel, Johan ;
El Soussi, Mohieddine ;
Breeschoten, Arjan ;
Korpela, Hannu ;
Liu, Yao-Hong ;
Bachmann, Christian .
2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 :304-+
[2]  
[Anonymous], 2015, TSS 53LNB D 0 5 6 GH, P1
[3]  
[Anonymous], 2016, MAAM37000 3 5 7 GHZ, P1
[4]   UWB-Based Indoor Localization: How to Optimally Design the Operating Setup? [J].
Cerro, Gianni ;
Ferrigno, Luigi ;
Laracca, Marco ;
Miele, Gianfranco ;
Milano, Filippo ;
Pingerna, Valentina .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
[5]  
Fernandes JR, 2010, IEEE INT SYMP CIRC S, P3284, DOI 10.1109/ISCAS.2010.5537916
[6]   A 1-40-GHz LNA MMIC Using Multiple Bandwidth Extension Techniques [J].
Hu, Jianquan ;
Ma, Kaixue .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (05) :336-338
[7]   A Seven-Octave Broadband LNA MMIC Using Bandwidth Extension Techniques and Improved Active Load [J].
Hu, Jianquan ;
Ma, Kaixue ;
Mou, Shouxian ;
Meng, Fanyi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (10) :3150-3161
[8]   An IR-UWB CMOS Transceiver With Extended Pulse Position Modulation [J].
Lee, Geunhaeng ;
Jang, Junyoung ;
Kim, Ji-Hoon ;
Kim, Tae Wook .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (08) :2281-2291
[9]   A 1.15 mW Low-Power Low-Complexity Reconfigurable FM-UWB Transmitter [J].
Li, Yao ;
Zhou, Bo ;
Zhao, Fuyuan ;
Liu, Yujie ;
Jin, Yeran .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2022, 30 (06) :706-719
[10]   Survey of wireless indoor positioning techniques and systems [J].
Liu, Hui ;
Darabi, Houshang ;
Banerjee, Pat ;
Liu, Jing .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2007, 37 (06) :1067-1080