Effect of substrate morphology on characteristics of layer-by-layer self-assembly nanofiltration membrane for micropollutants removal

被引:13
|
作者
Luo, Juan [1 ,2 ]
Zhou, Bowen [2 ,3 ]
Dong, Chenjun [2 ]
He, Rongrong [2 ,3 ]
Zhang, Yuling [4 ]
He, Tao [1 ,2 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Dalian Eurofilm Ind Ltd, Dalian 116041, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanofiltration; Layer-by-layer; Substrates morphology; Overcompensation; Micropollutants removal; POLYELECTROLYTE MULTILAYER MEMBRANES; EXPONENTIAL-GROWTH; WATER; REJECTION; CONTAMINANTS; PESTICIDES; BEHAVIOR; BUILDUP; FILMS;
D O I
10.1016/j.desal.2023.117229
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Layer-by-layer (LBL) hollow fiber nanofiltration (NF) membranes have emerged as a promising technology for the removal of micropollutants (MPs). Previous research has been largely focused on polyelectrolyte pairs and coating parameters. This paper studied the substrate morphology, a critical factor often being overlooked. Poly (allylamine hydrochloride) /poly (styrene sulfonic acid) sodium salt (PAH/PSS) coating was utilized to evaluate the impact of the substrate morphology. Two polyethersulfone substrates were selected: Substrate 1# with dense skins at both lumen/shell and Substrate 2# with skin at the lumen and an open shell surface. All LBL NF membranes showed molecular weight cut-off ranging from 180 to 223 Da and MgCl2 rejection around 94 %. For LBL membrane 1#, with coatings on both shell/lumen sides, the outer coating was defective due to scratches. For LBL membrane 2# with a coating at the lumen, significant PAH overcompensation was observed, because of the open inner and outer surfaces comparing to LBL membrane 1#. Higher rejection to positively charged MPs was resulted from Donnan effect, outperforming steric exclusion. The backwash stability of both membranes was excellent and independent of the substrate structure. This work provides a basis for substrate selection for fabricating LBL NF membranes.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Layer-by-Layer Self-Assembly Vectors for Gene Delivery
    Li, Peng
    Zhang, Na
    CURRENT GENE THERAPY, 2011, 11 (01) : 58 - 73
  • [22] Layer-by-layer self-assembly: the contribution of hydrophobic interactions
    Kotov, N.A.
    Nanostructured Materials, 1999, 12 (05): : 789 - 796
  • [23] Layer-by-layer self-assembly of hydrophobically modified polyelectrolytes
    Cochin, D
    Laschewsky, A
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 1999, 200 (03) : 609 - 615
  • [24] Layer-by-layer self-assembly and clinical application in orthopedics
    Ma, Xiao
    Zhao, Duoyi
    Xiang, Yubo
    Hua, Yingqi
    Zhao, Wei
    Cui, Yan
    Zhang, Zhiyu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 147 : 241 - 268
  • [25] Layer-by-layer self-assembly of polyelectrolytes and dyes.
    Dai, ZF
    Donath, E
    Moewald, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U368 - U368
  • [26] Layer-by-Layer Self-Assembly of Polymers with Pairing Interactions
    Zaldivar, Gervasio
    Tagliazucchi, Mario
    ACS MACRO LETTERS, 2016, 5 (07): : 862 - 866
  • [27] Layer-by-Layer Self-Assembly for Reinforcement of Aged Papers
    Jiang, Fuze
    Yang, Youdi
    Weng, Jiajia
    Zhang, Xiaogang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (40) : 10544 - 10554
  • [28] Layer-by-layer self-assembly of Prussian blue colloids
    Jaiswal, A
    Colins, J
    Agricole, B
    Delhaes, P
    Ravaine, S
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2003, 261 (02) : 330 - 335
  • [29] Layer-by-layer self-assembly: The contribution of hydrophobic interactions
    Kotov, NA
    NANOSTRUCTURED MATERIALS, 1999, 12 (5-8): : 789 - 796
  • [30] Fabrication of nanofiltration membranes via covalent layer-by-layer self-assembly for charged organic pollutants treatment
    Xiong Luo
    Shuman Feng
    Zezhen Zhang
    Lulu Liu
    Lili Wu
    Chaocan Zhang
    Journal of Materials Science, 2022, 57 : 9002 - 9017