Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs

被引:8
|
作者
He, Wen [1 ]
Deng, Jinjun [1 ]
Ma, Binghe [1 ]
Tao, Kai [1 ]
Zhang, Zhi [2 ,3 ,4 ]
Ramakrishna, Seeram [5 ]
Yuan, Weizheng [1 ]
Ye, Tao [1 ]
机构
[1] Northwestern Polytech Univ, Key Lab Micro Nano Syst Aerosp, Minist Educ, Xian 710072, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, Dept Oral Maxillofacial Surg, State Key Lab Oral Dis, Chengdu 610041, Sichuan, Peoples R China
[3] Sichuan Univ, West China Hosp Stomatol, Natl Ctr Stomatol, Dept Oral Maxillofacial Surg, Chengdu 610041, Sichuan, Peoples R China
[4] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, Dept Oral Maxillofacial Surg, Chengdu 610041, Sichuan, Peoples R China
[5] Natl Univ Singapore, Ctr Nanofibers & Nanotechnol, Singapore 117576, Singapore
基金
中国国家自然科学基金;
关键词
bioink; 3D bioprinting; tissue engineering; regeneration; organs; MESENCHYMAL STEM-CELLS; SPINAL-CORD-INJURY; EXTRACELLULAR-MATRIX; MECHANICAL-PROPERTIES; POTENTIAL BIOINK; HYDROGEL BIOINK; VALVE CONDUITS; SKIN MODEL; BONE; CONSTRUCTS;
D O I
10.1021/acsabm.3c00806
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.
引用
收藏
页码:17 / 43
页数:27
相关论文
共 50 条
  • [21] Nanocomposite bioinks for 3D bioprinting
    Cai, Yanli
    Chang, Soon Yee
    Gan, Soo Wah
    Ma, Sha
    Lu, Wen Feng
    Yen, Ching-Chiuan
    ACTA BIOMATERIALIA, 2022, 151 : 45 - 69
  • [22] 3D bioprinting of tissues and organs for regenerative medicine
    Vijayavenkataraman, Sanjairaj
    Yan, Wei-Cheng
    Lu, Wen Feng
    Wang, Chi-Hwa
    Fuh, Jerry Ying Hsi
    ADVANCED DRUG DELIVERY REVIEWS, 2018, 132 : 296 - 332
  • [23] Bioprinting of 3D tissues/organs combined with microfluidics
    Ma, Jingyun
    Wang, Yachen
    Liu, Jing
    RSC ADVANCES, 2018, 8 (39) : 21712 - 21727
  • [24] Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting
    Gu, Yawei
    Forget, Aurelien
    Shastri, V. Prasad
    ADVANCED SCIENCE, 2022, 9 (03)
  • [25] Human-Recombinant-Elastin-Based Bioinks for 3D Bioprinting of Vascularized Soft Tissues
    Lee, Sohyung
    Sani, Ehsan Shirzaei
    Spencer, Andrew R.
    Guan, Yvonne
    Weiss, Anthony S.
    Annabi, Nasim
    ADVANCED MATERIALS, 2020, 32 (45)
  • [26] Latest Advances in 3D Bioprinting of Cardiac Tissues
    Jafari, Arman
    Ajji, Zineb
    Mousavi, Ali
    Naghieh, Saman
    Bencherif, Sidi A.
    Savoji, Houman
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (11)
  • [27] 3D Bioprinting Stem Cell Derived Tissues
    Tasnim, Nishat
    De la Vega, Laura
    Kumar, Shweta Anil
    Abelseth, Laila
    Alonzo, Matthew
    Amereh, Meitham
    Joddar, Binata
    Willerth, Stephanie M.
    CELLULAR AND MOLECULAR BIOENGINEERING, 2018, 11 (04) : 219 - 240
  • [28] Silk-Based Bioinks for 3D Bioprinting
    Chawla, Shikha
    Midha, Swati
    Sharma, Aarushi
    Ghosh, Sourabh
    ADVANCED HEALTHCARE MATERIALS, 2018, 7 (08)
  • [29] Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting
    Mueller, Michael
    Becher, Jana
    Schnabelrauch, Matthias
    Zenobi-Wong, Marcy
    BIOFABRICATION, 2015, 7 (03)
  • [30] Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering
    Zhe, Man
    Wu, Xinyu
    Yu, Peiyun
    Xu, Jiawei
    Liu, Ming
    Yang, Guang
    Xiang, Zhou
    Xing, Fei
    Ritz, Ulrike
    MATERIALS, 2023, 16 (08)