Flow structure transition in thermal vibrational convection

被引:23
作者
Guo, Xi-Li [1 ,2 ]
Wu, Jian-Zhao [1 ,2 ]
Wang, Bo-Fu [1 ,2 ,3 ]
Zhou, Quan [1 ,2 ,3 ]
Chong, Kai Leong [1 ,2 ,3 ]
机构
[1] Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Mech & Engn Sci, Shanghai 200072, Peoples R China
[2] Shanghai Univ, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
[3] Shanghai Inst Aircraft Mech & Control, Zhangwu Rd, Shanghai, Peoples R China
基金
中国博士后科学基金;
关键词
Benard convection; convection in cavities; RAYLEIGH; FLUID;
D O I
10.1017/jfm.2023.666
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study investigates the effect of vibration on the flow structure transitions in thermal vibrational convection (TVC) systems, which occur when a fluid layer with a temperature gradient is excited by vibration. Direct numerical simulation (DNS) of TVC in a two-dimensional enclosed square box is performed over a range of dimensionless vibration amplitudes 0.001 <= a <= 0.3 and angular frequencies 10(2) <= omega = 10(7), with a fixed Prandtl number of 4.38. The flow visualisation shows the transition behaviour of flow structure upon the varying frequency, characterising three distinct regimes, which are the periodic-circulation regime, columnar regime and columnar-broken regime. Different statistical properties are distinguished from the temperature and velocity fluctuations at the boundary layer and mid-height. Upon transition into the columnar regime, columnar thermal coherent structures are formed, in contrast to the periodic oscillating circulation. These columns are contributed by the merging of thermal plumes near the boundary layer, and the resultant thermal updrafts remain at almost fixed lateral position, leading to a decrease in fluctuations. We further find that the critical point of this transition can be described nicely by the vibrational Rayleigh number Ravib. As the frequency continues to increase, entering the so-called columnar-broken regime, the columnar structures are broken, and eventually the flow state becomes a large-scale circulation (LSC), characterised by a sudden increase in fluctuations. Finally, a phase diagram is constructed to summarise the flow structure transition over a wide range of vibration amplitude and frequency parameters.
引用
收藏
页数:20
相关论文
共 45 条
  • [1] Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection
    Ahlers, Guenter
    Grossmann, Siegfried
    Lohse, Detlef
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 503 - 537
  • [2] BANNISTER T., 1973, NASA Tech. Memo X-61772
  • [3] Theoretical and numerical study on high frequency vibrational convection: Influence of the vibration direction on the flow structure
    Bouarab, Samia
    Mokhtari, Faiza
    Kaddeche, Slim
    Henry, Daniel
    Botton, Valery
    Medelfef, Abdessamed
    [J]. PHYSICS OF FLUIDS, 2019, 31 (04)
  • [4] European Space Agency experiments on thermodiffusion of fluid mixtures in space
    Braibanti, M.
    Artola, P. -A.
    Baaske, P.
    Bataller, H.
    Bazile, J. -P.
    Bou-Ali, M. M.
    Cannell, D. S.
    Carpineti, M.
    Cerbino, R.
    Croccolo, F.
    Diaz, J.
    Donev, A.
    Errarte, A.
    Ezquerro, J. M.
    Frutos-Pastor, A.
    Galand, Q.
    Galliero, G.
    Gaponenko, Y.
    Garcia-Fernandez, L.
    Gavalda, J.
    Giavazzi, F.
    Giglio, M.
    Giraudet, C.
    Hoang, H.
    Kufner, E.
    Koehler, W.
    Lapeira, E.
    Laveron-Simavilla, A.
    Legros, J. -C.
    Lizarraga, I.
    Lyubimova, T.
    Mazzoni, S.
    Melville, N.
    Mialdun, A.
    Minster, O.
    Montel, F.
    Molster, F. J.
    Ortiz de Zarate, J. M.
    Rodriguez, J.
    Rousseau, B.
    Ruiz, X.
    Ryzhkov, I. I.
    Schraml, M.
    Shevtsova, V.
    Takacs, C. J.
    Triller, T.
    Van Vaerenbergh, S.
    Vailati, A.
    Verga, A.
    Vermorel, R.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2019, 42 (07)
  • [5] Rayleigh Benard convective instability of a fluid under high-frequency vibration
    Cisse, I
    Bardan, G
    Mojtabi, A
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (19-20) : 4101 - 4112
  • [6] Crewdson G., 2021, Int. J. Thermofluids, V11
  • [7] Microgravity disturbance analysis on Chinese space laboratory
    Dong, Wenbo
    Duan, Wenxiang
    Liu, Wei
    Zhang, Yongkang
    [J]. NPJ MICROGRAVITY, 2019, 5 (1)
  • [8] Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness
    Garrabos, Y.
    Beysens, D.
    Lecoutre, C.
    Dejoan, A.
    Polezhaev, V.
    Emelianov, V.
    [J]. PHYSICAL REVIEW E, 2007, 75 (05):
  • [9] Gershuni G. Z., 1982, Fluid Dynamics, V17, P565, DOI 10.1007/BF01090025
  • [10] Gershuni G.Z., 1998, Thermal Vibrational Convection