mResU-Net: multi-scale residual U-Net-based brain tumor segmentation from multimodal MRI

被引:15
作者
Li, Pengcheng [1 ]
Li, Zhihao [1 ]
Wang, Zijian [1 ]
Li, Chaoxiang [1 ]
Wang, Monan [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin 150000, Heilongjiang, Peoples R China
关键词
Brain tumor segmentation; Multi-scale Residual U-Net; BraTS; Multimodal MRI;
D O I
10.1007/s11517-023-02965-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Brain tumor segmentation is an important direction in medical image processing, and its main goal is to accurately mark the tumor part in brain MRI. This study proposes a brand new end-to-end model for brain tumor segmentation, which is a multi-scale deep residual convolutional neural network called mResU-Net. The semantic gap between the encoder and decoder is bridged by using skip connections in the U-Net structure. The residual structure is used to alleviate the vanishing gradient problem during training and ensure sufficient information in deep networks. On this basis, multi-scale convolution kernels are used to improve the segmentation accuracy of targets of different sizes. At the same time, we also integrate channel attention modules into the network to improve its accuracy. The proposed model has an average dice score of 0.9289, 0.9277, and 0.8965 for tumor core (TC), whole tumor (WT), and enhanced tumor (ET) on the BraTS 2021 dataset, respectively. Comparing the segmentation results of this method with existing techniques shows that mResU-Net can significantly improve the segmentation performance of brain tumor subregions.
引用
收藏
页码:641 / 651
页数:11
相关论文
共 31 条
[1]  
Baid U., 2021, arXiv Preprint ArXiv, DOI DOI 10.48550/ARXIV.2107.02314
[2]   A Novel Approach for Fully Automatic Intra-Tumor Segmentation With 3D U-Net Architecture for Gliomas [J].
Baid, Ujjwal ;
Talbar, Sanjay ;
Rane, Swapnil ;
Gupta, Sudeep ;
Thakur, Meenakshi H. ;
Moiyadi, Aliasgar ;
Sable, Nilesh ;
Akolkar, Mayuresh ;
Mahajan, Abhishek .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
[3]  
Bakas S., 2018, arXiv, p1811.02629, DOI DOI 10.48550/ARXIV.1811.02629
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]  
Chen J., 2021, Cells, P1, DOI 10.48550/arXiv.2102.04306
[6]   3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework [J].
Guan, Xi ;
Yang, Guang ;
Ye, Jianming ;
Yang, Weiji ;
Xu, Xiaomei ;
Jiang, Weiwei ;
Lai, Xiaobo .
BMC MEDICAL IMAGING, 2022, 22 (01)
[7]  
Hatamizadeh A., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2204.00631
[8]  
Hatamizadeh A., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2201.01266
[9]   UNETR: Transformers for 3D Medical Image Segmentation [J].
Hatamizadeh, Ali ;
Tang, Yucheng ;
Nath, Vishwesh ;
Yang, Dong ;
Myronenko, Andriy ;
Landman, Bennett ;
Roth, Holger R. ;
Xu, Daguang .
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, :1748-1758
[10]   MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation [J].
Ibtehaz, Nabil ;
Rahman, M. Sohel .
NEURAL NETWORKS, 2020, 121 :74-87