Coefficient Inequalities and Fekete-Szego-Type Problems for Family of Bi-Univalent Functions

被引:7
作者
Al-Hawary, Tariq [1 ]
Amourah, Ala [2 ]
Almutairi, Hasan [3 ]
Frasin, Basem [4 ]
机构
[1] Al Balqa Appl Univ, Ajloun Coll, Dept Appl Sci, Ajloun 26816, Jordan
[2] Irbid Natl Univ, Fac Sci & Informat Technol, Dept Math, Irbid 21110, Jordan
[3] Univ Hafr Albatin, Fac Sci, Dept Math, Hafr Albatin 39524, Saudi Arabia
[4] Al al Bayt Univ, Fac Sci, Dept Math, Mafraq 25113, Jordan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
holomorphic; univalent; bi-univalent; Maclaurin series; coefficient inequalities; Fekete-Szego;
D O I
10.3390/sym15091747
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we present a novel family of holomorphic and bi-univalent functions, denoted as E & omega;(& eta;,& epsilon;;Ϝ). We establish the coefficient bounds for this family by utilizing the generalized telephone numbers. Additionally, we solve the Fekete-Szego functional for functions that belong to this family within the open unit disk. Moreover, our results have several consequences.
引用
收藏
页数:9
相关论文
共 33 条
[1]  
Abirami C., 2020, ABSTR APPL ANAL, DOI 10.1155/2020/7391058
[2]   A New Comprehensive Subclass of Analytic Bi-Univalent Functions Related to Gegenbauer Polynomials [J].
Al-Hawary, Tariq ;
Amourah, Ala ;
Alsoboh, Abdullah ;
Alsalhi, Omar .
SYMMETRY-BASEL, 2023, 15 (03)
[3]  
Al-Kaseasbeh M., 2021, Int. J. Open Probl. Complex Anal, V13, P29
[4]  
Alamoush A.G., 2021, Int. J. Open Probl. Complex Anal, V13, P10
[5]  
AlAmoush A.G., 2022, Int. J. Open Probl. Complex Anal, V14, P16
[6]  
Alsoboh A., 2019, Transylv. J. Mech. Math, V11, P10
[7]   An Application of Miller-Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials [J].
Amourah, Ala ;
Frasin, Basem Aref ;
Seoudy, Tamer M. .
MATHEMATICS, 2022, 10 (14)
[8]   Bi-Bazilevic functions of order θ [J].
Amourah, Ala ;
Frasin, B. A. ;
Murugusundaramoorthy, G. ;
Al-Hawary, Tariq .
AIMS MATHEMATICS, 2021, 6 (05) :4296-4305
[9]  
Amourah A, 2021, AFR MAT, V32, P1059, DOI 10.1007/s13370-021-00881-x
[10]  
[Anonymous], 2013, Novi Sad J. Math.