Methane Emissions From Land and Aquatic Ecosystems in Western Siberia: An Analysis With Methane Biogeochemistry Models

被引:1
作者
Xi, Xuan [1 ]
Zhuang, Qianlai [1 ,2 ]
Kim, Seungbum [3 ]
Zhang, Zhen [4 ,5 ]
机构
[1] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
[3] NASA Jet Prop Lab, Pasadena, CA USA
[4] Chinese Acad Sci, Inst Tibetan Plateau Res, Natl Tibetan Plateau Data Ctr TPDC, State Key Lab Tibetan Plateau Earth Syst Environm, Beijing, Peoples R China
[5] Univ Maryland, Dept Geog Sci, College Pk, MD USA
关键词
CLIMATE-CHANGE; ARCTIC LAKES; CO2; CH4; PERMAFROST; PEATLANDS; ALASKA; STATE; WATER; AREA;
D O I
10.1029/2023JG007466
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Western Siberia contains extensive wetlands and aquatic ecosystems, contributing a significant amount of methane (CH4) emissions to the atmosphere. However, estimates of CH4 fluxes over the region are poorly constrained partly due to the uncertainties from the inundated area data. This study applied two process-based biogeochemistry models to quantify the emissions from land and aquatic ecosystems over the region within the period 2000-2021 using different inundation datasets. To drive land methane modeling, we use one static wetland map and one dynamic wetland area data set called Wetland Area and Dynamics for Methane Modeling (WAD2M) (2000-2020). To drive lake methane modeling, we use the surface area of aquatic ecosystems from three datasets: (a) HydroLAKES; (b) Global Surface Water (GSW); and (c) surface water inundation from Soil Moisture Active Passive (SMAP) (2016-2021). Using these datasets, we conduct four simulations to compare emissions over the region. We find that the net methane emissions from land using the static wetland map are larger than those using WAD2M. SMAP and GSW estimate larger emissions than HydroLAKES does from aquatic ecosystems. Total emissions over the region range from 4.80 +/- 0.43 to 8.29 +/- 0.81 Tg CH4/year from 2016 to 2020, which is the intersection period of four simulations. This study is among the first to investigate methane emissions from the whole landscape in the region. Our study highlights the importance of dynamic wetland and aquatic area data in quantifying regional methane emissions. Plain Language Summary Methane (CH4) is a vital greenhouse gas that can make large differences in global climate change. In this study, we quantified total methane emissions over Western Siberia, which is a methane-emitting hotpot. We used two process-based models to quantify methane emissions from both land and aquatic ecosystems over the region. We used different combinations of wetlands and aquatic areal datasets to run four model simulations for comparison. We found that the total emissions over the region range from 4.80 +/- 0.43 to 8.29 +/- 0.81 Tg CH4/year from 2016 to 2020 depending on the land and aquatic areal dynamics. We conclude that it is important to develop dynamic wetland and aquatic area data in quantifying regional methane emissions.
引用
收藏
页数:15
相关论文
共 57 条
  • [1] Global extent of rivers and streams
    Allen, George H.
    Pavelsky, Tamlin M.
    [J]. SCIENCE, 2018, 361 (6402) : 585 - 587
  • [2] WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia
    Bohn, T. J.
    Melton, J. R.
    Ito, A.
    Kleinen, T.
    Spahni, R.
    Stocker, B. D.
    Zhang, B.
    Zhu, X.
    Schroeder, R.
    Glagolev, M. V.
    Maksyutov, S.
    Brovkin, V.
    Chen, G.
    Denisov, S. N.
    Eliseev, A. V.
    Gallego-Sala, A.
    McDonald, K. C.
    Rawlins, M. A.
    Riley, W. J.
    Subin, Z. M.
    Tian, H.
    Zhuang, Q.
    Kaplan, J. O.
    [J]. BIOGEOSCIENCES, 2015, 12 (11) : 3321 - 3349
  • [3] Contribution of anthropogenic and natural sources to atmospheric methane variability
    Bousquet, P.
    Ciais, P.
    Miller, J. B.
    Dlugokencky, E. J.
    Hauglustaine, D. A.
    Prigent, C.
    Van der Werf, G. R.
    Peylin, P.
    Brunke, E. -G.
    Carouge, C.
    Langenfelds, R. L.
    Lathiere, J.
    Papa, F.
    Ramonet, M.
    Schmidt, M.
    Steele, L. P.
    Tyler, S. C.
    White, J.
    [J]. NATURE, 2006, 443 (7110) : 439 - 443
  • [4] Ciais P., 2013, Comput. Geom, V18, P95
  • [5] Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat
    Du, Jinyang
    Kimball, John S.
    Galantowicz, John
    Kim, Seung-Bum
    Chan, Steven K.
    Reichle, Rolf
    Jones, Lucas A.
    Watts, Jennifer D.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2018, 213 : 1 - 17
  • [6] Regular surface patterning of peatlands: Confronting theory with field data
    Eppinga, Maarten B.
    Rietkerk, Max
    Borren, Wiebe
    Lapshina, Elena D.
    Bleuten, Wladimir
    Wassen, Martin J.
    [J]. ECOSYSTEMS, 2008, 11 (04) : 520 - 536
  • [7] Validation and Sensitivity Analysis of a 1-D Lake Model Across Global Lakes
    Guo, Mingyang
    Zhuang, Qianlai
    Yao, Huaxia
    Golub, Malgorzata
    Leung, L. Ruby
    Pierson, Don
    Tan, Zeli
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (04)
  • [8] Rising methane emissions from boreal lakes due to increasing ice-free days
    Guo, Mingyang
    Zhuang, Qianlai
    Tan, Zeli
    Shurpali, Narasinha
    Juutinen, Sari
    Kortelainen, Pirkko
    Martikainen, Pertti J.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (06):
  • [9] Multimodel simulation of vertical gas transfer in a temperate lake
    Guseva, Sofya
    Bleninger, Tobias
    Joehnk, Klaus
    Polli, Bruna Arcie
    Tan, Zeli
    Thiery, Wim
    Zhuang, Qianlai
    Rusak, James Anthony
    Yao, Huaxia
    Lorke, Andreas
    Stepanenko, Victor
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2020, 24 (02) : 697 - 715
  • [10] Hersbach H, ERA5 HOURLY DATA SIN, DOI [10.24381/cds.adbb2d47, DOI 10.24381/CDS.ADBB2D47]