Parameter estimation of fractional chaotic systems based on stepwise integration and response sensitivity analysis

被引:16
作者
Zhang, Tao [1 ,2 ]
Lu, Zhong-rong [1 ]
Liu, Ji-ke [3 ]
Liu, Guang [1 ,2 ]
机构
[1] Shenzhen Campus Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Shenzhen, Peoples R China
[2] Shenzhen Key Lab Intelligent Microsatellite Conste, Shenzhen, Peoples R China
[3] Sun Yat Sen Univ, Guangzhou, Peoples R China
关键词
Fractional chaotic system; Parameter estimation; Stepwise integration; Response sensitivity analysis; Trust-region constraint; DYNAMIC-ANALYSIS; IDENTIFICATION; SYNCHRONIZATION; ALGORITHM;
D O I
10.1007/s11071-023-08623-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a new parameter estimation approach for fractional chaotic systems based on stepwise integration and response sensitivity analysis. This paper mainly consists of three parts. First, a numerical discretization scheme is introduced to obtain the numerical solution of the Grunwald-Letnikov fractional-order equations. Then, we propose a new stepwise objective function based on the single-step integration. Unlike the traditional nonlinear least-squares objective function with multiple local optimal values, the new objective function has a unique minimum value. Next, the nonlinear stepwise objective function is linearized to reduce the solving difficulty, and the trust-region constraint is introduced to raise the convergence performance of the proposed approach. Lastly, the efficiency and viability of the stepwise response sensitivity approach are demonstrated by several numerical tests.
引用
收藏
页码:15127 / 15144
页数:18
相关论文
共 38 条
[1]   Chaotic dynamics and chaos control for the fractional-order geomagnetic field model [J].
Al-khedhairi, A. ;
Matouk, A. E. ;
Khan, I .
CHAOS SOLITONS & FRACTALS, 2019, 128 :390-401
[2]   Modified projective synchronization of uncertain fractional order hyperchaotic systems [J].
Bai, Jing ;
Yu, Yongguang ;
Wang, Sha ;
Song, Yu .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1921-1928
[3]   An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty [J].
Behinfaraz, Reza ;
Badamchizadeh, Mohammadali ;
Ghiasi, Amir Rikhtegar .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) :4468-4479
[4]   Fractional diffusion based on Riemann-Liouville fractional derivatives [J].
Hilfer, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3914-3917
[5]   A hybrid artificial bee colony algorithm for parameter identification of uncertain fractional-order chaotic systems [J].
Hu, Wei ;
Yu, Yongguang ;
Zhang, Shuo .
NONLINEAR DYNAMICS, 2015, 82 (03) :1441-1456
[6]   Development of fractional order capacitors based on electrolyte processes [J].
Jesus, Isabel S. ;
Machado, J. A. Tenreiro .
NONLINEAR DYNAMICS, 2009, 56 (1-2) :45-55
[7]   Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit [J].
Kengne, J. ;
Negou, A. Nguomkam ;
Tchiotsop, D. .
NONLINEAR DYNAMICS, 2017, 88 (04) :2589-2608
[8]   Fractional-order permanent magnet synchronous motor and its adaptive chaotic control [J].
Li Chun-Lai ;
Yu Si-Min ;
Luo Xiao-Shu .
CHINESE PHYSICS B, 2012, 21 (10)
[9]   Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm [J].
Lin, Jian ;
Wang, Zhou-Jing .
NONLINEAR DYNAMICS, 2017, 90 (02) :1243-1255
[10]   Identification of an Airfoil-Store System with Cubic Nonlinearity via Enhanced Response Sensitivity Approach [J].
Liu, G. ;
Wang, L. ;
Liu, J. K. ;
Chen, Y. M. ;
Lu, Z. R. .
AIAA JOURNAL, 2018, 56 (12) :4977-4987