Implementation of threshold- and memory-switching memristors based on electrochemical metallization in an identical ferroelectric electrolyte

被引:8
作者
Yoon, Chansoo [1 ]
Oh, Gwangtaek [1 ]
Kim, Sohwi [1 ]
Jeon, Jihoon [1 ]
Lee, Ji Hye [2 ,3 ]
Kim, Young Heon [4 ]
Park, Bae Ho [1 ]
机构
[1] Konkuk Univ, Dept Phys, Div Quantum Phases & Devices, Seoul 143701, South Korea
[2] Inst Basic Sci IBS, Ctr Correlated Electron Syst CCES, Seoul 08826, South Korea
[3] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[4] Chungnam Natl Univ, Grad Sch Analyt Sci & Technol, Daejoen 34134, South Korea
基金
新加坡国家研究基金会;
关键词
REAL-TIME OBSERVATION; DEVICE; FILAMENTS; DYNAMICS;
D O I
10.1038/s41427-023-00481-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The use of an identical electrolyte in electrochemical metallization (ECM)-based neuron and synaptic devices has not yet been achieved due to their different resistive-switching characteristics. Herein, we describe ECM devices comprising the same ferroelectric PbZr0.52Ti0.48O3 (PZT) electrolyte, which can sustain both neuron and synaptic behavior depending on the identity of the active electrode. The Ag/PZT/La0.8Sr0.2MnO3 (LSMO) threshold switching memristor shows abrupt and volatile resistive switching characteristics, which lead to neuron devices with stochastic integration-and-fire behavior, auto-recovery, and rapid operation. In contrast, the Ni/PZT/LSMO memory switching memristor exhibits gradual, non-volatile resistive switching behavior, which leads to synaptic devices with a high on/off ratio, low on-state current, low variability, and spike-timing-dependent plasticity (STDP). The divergent behavior of the ECM devices is attributed to greater control of cation migration through the ultrathin ferroelectric PZT. Thus, ECM devices with an identical ferroelectric electrolyte offer promise as essential building blocks in the construction of high-performance neuromorphic computing systems.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Dual-Gated MoS2 Neuristor for Neuromorphic Computing [J].
Bao, Lin ;
Zhu, Jiadi ;
Yu, Zhizhen ;
Jia, Rundong ;
Cai, Qifeng ;
Wang, Zongwei ;
Xu, Liying ;
Wu, Yanqing ;
Yang, Yuchao ;
Cai, Yimao ;
Huang, Ru .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (44) :41482-41489
[2]   Learning through ferroelectric domain dynamics in solid-state synapses [J].
Boyn, Soeren ;
Grollier, Julie ;
Lecerf, Gwendal ;
Xu, Bin ;
Locatelli, Nicolas ;
Fusil, Stephane ;
Girod, Stephanie ;
Carretero, Cecile ;
Garcia, Karin ;
Xavier, Stephane ;
Tomas, Jean ;
Bellaiche, Laurent ;
Bibes, Manuel ;
Barthelemy, Agnes ;
Saighi, Sylvain ;
Garcia, Vincent .
NATURE COMMUNICATIONS, 2017, 8
[3]   Neuromorphic computing using non-volatile memory [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sebastian, Abu ;
Kim, Sangbum ;
Kim, Seyoung ;
Sidler, Severin ;
Virwani, Kumar ;
Ishii, Masatoshi ;
Narayanan, Pritish ;
Fumarola, Alessandro ;
Sanches, Lucas L. ;
Boybat, Irem ;
Le Gallo, Manuel ;
Moon, Kibong ;
Woo, Jiyoo ;
Hwang, Hyunsang ;
Leblebici, Yusuf .
ADVANCES IN PHYSICS-X, 2017, 2 (01) :89-124
[4]   Conductive-bridging random-access memories for emerging neuromorphic computing [J].
Cha, Jun-Hwe ;
Yang, Sang Yoon ;
Oh, Jungyeop ;
Choi, Shinhyun ;
Park, Sangsu ;
Jang, Byung Chul ;
Ahn, Wonbae ;
Choi, Sung-Yool .
NANOSCALE, 2020, 12 (27) :14339-14368
[5]  
Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
[6]  
Chen PY, 2015, ICCAD-IEEE ACM INT, P194, DOI 10.1109/ICCAD.2015.7372570
[7]   SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations [J].
Choi, Shinhyun ;
Tan, Scott H. ;
Li, Zefan ;
Kim, Yunjo ;
Choi, Chanyeol ;
Chen, Pai-Yu ;
Yeon, Hanwool ;
Yu, Shimeng ;
Kim, Jeehwan .
NATURE MATERIALS, 2018, 17 (04) :335-+
[8]   Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing [J].
Fuller, Elliot J. ;
Keene, Scott T. ;
Melianas, Armantas ;
Wang, Zhongrui ;
Agarwal, Sapan ;
Li, Yiyang ;
Tuchman, Yaakov ;
James, Conrad D. ;
Marinella, Matthew J. ;
Yang, J. Joshua ;
Salleo, Alberto ;
Talin, A. Alec .
SCIENCE, 2019, 364 (6440) :570-+
[9]   Ultra-Low-Energy Three-Dimensional Oxide-Based Electronic Synapses for Implementation of Robust High-Accuracy Neuromorphic Computation Systems [J].
Gao, Bin ;
Bi, Yingjie ;
Chen, Hong-Yu ;
Liu, Rui ;
Huang, Peng ;
Chen, Bing ;
Liu, Lifeng ;
Liu, Xiaoyan ;
Yu, Shimeng ;
Wong, H. -S. Philip ;
Kang, Jinfeng .
ACS NANO, 2014, 8 (07) :6998-7004
[10]   Electrochemical processes and device improvement in conductive bridge RAM cells [J].
Goux, Ludovic ;
Valov, Ilia .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (02) :274-288