Artificial intelligence in inflammatory bowel disease: implications for clinical practice and future directions

被引:22
作者
Ahmad, Harris A. [1 ]
East, James E. [2 ]
Panaccione, Remo [3 ]
Travis, Simon [2 ]
Canavan, James B. [1 ]
Usiskin, Keith [1 ]
Byrne, Michael F. [4 ,5 ,6 ]
机构
[1] Bristol Myers Squibb, Princeton, NJ USA
[2] Univ Oxford, Oxford NIHR Biomed Res Ctr, Translat Gastroenterol Unit, Oxford, England
[3] Univ Calgary, Inflammatory Bowel Dis Clin, Calgary, AB, Canada
[4] Univ British Columbia, Dept Med, Div Gastroenterol, Vancouver, BC, Canada
[5] Satisfai Hlth, Vancouver, BC, Canada
[6] Univ British Columbia, Vancouver Gen Hosp, Dept Med, Div Gastroenterol, 5135-2775 Laurel St, Vancouver, BC V5Z 1M9, Canada
关键词
Artificial intelligence; Inflammatory bowel diseases; Endoscopy; ENDOSCOPY;
D O I
10.5217/ir.2023.00020
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Inflammatory bowel disease encompasses Crohn's disease and ulcerative colitis and is characterized by uncontrolled, relapsing, and remitting course of inflammation in the gastrointestinal tract. Artificial intelligence represents a new era within the field of gastroenterology, and the amount of research surrounding artificial intelligence in patients with inflammatory bowel disease is on the rise. As clinical trial outcomes and treatment targets evolve in inflammatory bowel disease, artificial intelligence may prove as a valuable tool for providing accurate, consistent, and reproducible evaluations of endoscopic appearance and histologic activity, thereby optimizing the diagnosis process and identifying disease severity. Furthermore, as the applications of artificial intelligence for inflammatory bowel disease continue to expand, they may present an ideal opportunity for improving disease management by predicting treatment response to biologic therapies and for refining the standard of care by setting the basis for future treatment personalization and cost reduction. The purpose of this review is to provide an overview of the unmet needs in the management of inflammatory bowel disease in clinical practice and how artificial intelligence tools can address these gaps to transform patient care. (Intest Res, Published online )
引用
收藏
页码:283 / 294
页数:12
相关论文
共 72 条
[1]   The impact of artificial intelligence in medicine on the future role of the physician [J].
Ahuja, Abhimanyu S. .
PEERJ, 2019, 7
[2]   The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J].
Alatab, Sudabeh ;
Sepanlou, Sadaf G. ;
Ikuta, Kevin ;
Vahedi, Homayoon ;
Bisignano, Catherine ;
Safiri, Saeid ;
Sadeghi, Anahita ;
Nixon, Molly R. ;
Abdoli, Amir ;
Abolhassani, Hassan ;
Alipour, Vahid ;
Almadi, Majid A. H. ;
Almasi-Hashiani, Amir ;
Anushiravani, Amir ;
Arabloo, Jalal ;
Atique, Suleman ;
Awasthi, Ashish ;
Badawi, Alaa ;
Baig, Atif A. A. ;
Bhala, Neeraj ;
Bijani, Ali ;
Biondi, Antonio ;
Borzi, Antonio M. ;
Burke, Kristin E. ;
Carvalho, Felix ;
Daryani, Ahmad ;
Dubey, Manisha ;
Eftekhari, Aziz ;
Fernandes, Eduarda ;
Fernandes, Joao C. ;
Fischer, Florian ;
Haj-Mirzaian, Arvin ;
Haj-Mirzaian, Arya ;
Hasanzadeh, Amir ;
Hashemian, Maryam ;
Hay, Simon, I ;
Hoang, Chi L. ;
Househ, Mowafa ;
Ilesanmi, Olayinka S. ;
Balalami, Nader Jafari ;
James, Spencer L. ;
Kengne, Andre P. ;
Malekzadeh, Masoud M. ;
Merat, Shahin ;
Meretoja, Tuomo J. ;
Mestrovic, Tomislav ;
Mirrakhimov, Erkin M. ;
Mirzaei, Hamed ;
Mohammad, Karzan A. ;
Mokdad, Ali H. .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (01) :17-30
[3]   A deep learning framework for quality assessment and restoration in video endoscopy [J].
Ali, Sharib ;
Zhou, Felix ;
Bailey, Adam ;
Braden, Barbara ;
East, James E. ;
Lu, Xin ;
Rittscher, Jens .
MEDICAL IMAGE ANALYSIS, 2021, 68
[4]  
[Anonymous], Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)
[5]   In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn's disease [J].
Atreya, Raja ;
Neumann, Helmut ;
Neufert, Clemens ;
Waldner, Maximilian J. ;
Billmeier, Ulrike ;
Zopf, Yurdaguel ;
Willma, Marcus ;
App, Christine ;
Muenster, Tino ;
Kessler, Hermann ;
Maas, Stefanie ;
Gebhardt, Bernd ;
Heimke-Brinck, Ralph ;
Reuter, Eva ;
Doerje, Frank ;
Rau, Tilman T. ;
Uter, Wolfgang ;
Wang, Thomas D. ;
Kiesslich, Ralf ;
Vieth, Michael ;
Hannappel, Ewald ;
Neurath, Markus F. .
NATURE MEDICINE, 2014, 20 (03) :313-318
[6]   Proof of Concept for a Deep Learning Algorithm for Identification and Quantification of Key Microscopic Features in the Murine Model of DSS-Induced Colitis [J].
Bedard, Agathe ;
Westerling-Bui, Thomas ;
Zuraw, Aleksandra .
TOXICOLOGIC PATHOLOGY, 2021, 49 (04) :897-904
[7]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[8]   Position statement on priorities for artificial intelligence in GI endoscopy: a report by the ASGE Task Force [J].
Berzin, Tyler M. ;
Parasa, Sravanthi ;
Wallace, Michael B. ;
Gross, Seth A. ;
Repici, Alessandro ;
Sharma, Prateek .
GASTROINTESTINAL ENDOSCOPY, 2020, 92 (04) :951-959
[9]   Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells [J].
Bielecki, Christiane ;
Bocklitz, Thomas W. ;
Schmitt, Michael ;
Krafft, Christoph ;
Marquardt, Claudio ;
Gharbi, Akram ;
Knoesel, Thomas ;
Stallmach, Andreas ;
Popp, Juergen .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (07)
[10]   Multi-"-Omics" Profiling in Patients With Quiescent Inflammatory Bowel Disease Identifies Biomarkers Predicting Relapse [J].
Borren, Nienke Z. ;
Plichta, Damian ;
Joshi, Amit D. ;
Bonilla, Gracia ;
Sadreyev, Ruslan ;
Vlamakis, Hera ;
Xavier, Ramnik J. ;
Ananthakrishnan, Ashwin N. .
INFLAMMATORY BOWEL DISEASES, 2020, 26 (10) :1524-1532