Saturation-recovery (SR)-EPR can determine electron spin-lattice relaxation rates in liquids over a wide range of effective viscosity, making it especially useful for biophysical and biomedical applications. Here, I develop exact solutions for the SR-EPR and SR-ELDOR rate constants of 14N-nitroxyl spin labels as a function of rotational correlation time and spectrometer operating frequency. Explicit mechanisms for electron spin-lattice relaxation are: rotational modulation of the N-hyperfine and electron-Zeeman ani-sotropies (specifically including cross terms), spin-rotation interaction, and residual frequency -independent vibrational contributions from Raman processes and local modes. Cross relaxation from mutual electron and nuclear spin flips, and direct nitrogen nuclear spin-lattice relaxation, also must be included. Both the latter are further contributions from rotational modulation of the electron -nuclear dipolar interaction (END). All the conventional liquid-state mechanisms are defined fully by the spin-Hamiltonian parameters; only the vibrational contributions contain fitting parameters. This analysis gives a firm basis for interpreting SR (and inversion recovery) results in terms of additional, less standard mechanisms.(c) 2023 Elsevier Inc. All rights reserved.