A semi-supervised framework for computational fluid dynamics prediction

被引:3
|
作者
Wang, Xiao [1 ,2 ]
Dong, Yidao [3 ]
Zou, Shufan [3 ]
Zhang, Laiping [4 ]
Deng, Xiaogang [1 ,5 ]
机构
[1] Sichuan Univ, Sch Comp Sci, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Tianfu Engn Oriented Numer Simulat & Software Inno, Chengdu 610207, Peoples R China
[3] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410000, Peoples R China
[4] Natl Innovat Inst Def Technol, Unmanned Syst Res Ctr, Beijing 100071, Peoples R China
[5] Acad Mil Sci, Beijing 100190, Peoples R China
关键词
Computational fluid dynamics; Aerodynamic prediction; Gaussian mixture model; Discriminative regression fitters; SIMULATION; DESIGN; FLOW;
D O I
10.1016/j.asoc.2024.111422
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data -driven deep learning approach heavily relies on the diversity and quantity of data. Acquiring data in the computational fluid dynamics (CFD) domain is a time and computationally intensive process. This paper proposes a semi -supervised learning method called discriminative regression fitters (DRF) for aerodynamic prediction of airfoils. DRF utilizes neural networks' memory property to dynamically divide pseudo -labeled data into easy and difficult subsets using a model of Gaussian distribution. The method classifies unlabeled data based on loss and updates the pseudo -labeled data, improving the model's generalization capability. Experiments on airfoil regression task datasets show that DRF achieves similar or better prediction accuracy than fully supervised approaches. It reduces data acquisition time by 70%. Ablation studies and qualitative results verify the effectiveness of DRF. The surrogate model obtained from DRF is extended to airfoil optimization, demonstrating its practicality. DRF provides a promising direction for improving the regression task while reducing the reliance on large amounts of CFD data.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Performance Prediction and Design Method for Centrifugal Pump Based on Computational Fluid Dynamics
    Shao, C. L.
    Gu, B. Q.
    Huang, X. L.
    MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-5, 2010, 97-101 : 3463 - 3466
  • [22] Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
    Zhang, Yao
    Lee, Alpha A.
    CHEMICAL SCIENCE, 2019, 10 (35) : 8154 - 8163
  • [23] Numerical prediction of impulse and overpressure for a green high energy metal organic framework (HE-MOF) using computational fluid dynamics
    Noorpoor, Zeinab
    Tavangar, Saeed
    Soury, Hosein
    Hoseini, Seyed Ghorban
    JOURNAL OF COORDINATION CHEMISTRY, 2023, 76 (11-12) : 1440 - 1459
  • [24] A preliminary study of assimilating numerical weather prediction data into computational fluid dynamics models for wind prediction
    Zajaczkowski, Frank J.
    Haupt, Sue Ellen
    Schmehl, Kerrie J.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2011, 99 (04) : 320 - 329
  • [25] Computational Fluid Dynamics Analysis of Spray Cooling in Australia
    Larpruenrudee, Puchanee
    Do, Doan Khai
    Bennett, Nick S.
    Saha, Suvash C.
    Ghalambaz, Mohammad
    Islam, Mohammad S.
    ENERGIES, 2023, 16 (14)
  • [26] Neko: A modern, portable, and scalable framework for high-fidelity computational fluid dynamics
    Jansson, Niclas
    Karp, Martin
    Podobas, Artur
    Markidis, Stefano
    Schlatter, Philipp
    COMPUTERS & FLUIDS, 2024, 275
  • [27] A generalized framework for integrating machine learning into computational fluid dynamics
    Sun, Xuxiang
    Cao, Wenbo
    Shan, Xianglin
    Liu, Yilang
    Zhang, Weiwei
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 82
  • [28] An uncertainty-quantification framework for assessing accuracy, sensitivity, and robustness in computational fluid dynamics
    Rezaeiravesh, S.
    Vinuesa, R.
    Schlatter, P.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 62
  • [29] A Generative Semi-Supervised Classifier for Datasets with Unknown Classes
    Schrunner, Stefan
    Geiger, Bernhard C.
    Zernig, Anja
    Kern, Roman
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1066 - 1074
  • [30] Toward a Semi-Supervised Learning Approach to Phylogenetic Estimation
    Silvestro, Daniele
    Latrille, Thibault
    Salamin, Nicolas
    SYSTEMATIC BIOLOGY, 2024, 73 (05) : 789 - 806