On Mahler's Um-numbers in fields of formal power series over finite fields

被引:0
作者
Can, Busra [1 ,2 ]
Kekec, Gulcan [3 ]
机构
[1] Istanbul Univ, Inst Grad Studies Sci, Esnaf Hosp Bldg 4th Floor, Istanbul, Turkiye
[2] Dogus Univ, Fac Engn, Dept Comp Engn, Nato Yolu St 265, TR-34775 Istanbul, Turkiye
[3] Istanbul Univ, Fac Sci, Dept Math, TR-34134 Istanbul, Turkiye
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2024年 / 67卷 / 01期
关键词
Mahler's classification of transcendental formal power series over a finite field; U-number; continued fraction; transcendence measure; CONTINUED FRACTIONS; APPROXIMATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a finite field, K(x) be the quotient field of the ring of polynomials in x with coefficients in K and K be the field of formal power series over K. In this paper, we treat polynomials whose coefficients belong to a field extension of degree m over K(x). We show that the values of these polynomials at certain U-1-numbers in the field K are U-m- numbers in K.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 15 条
[1]  
Alniacik K., 1979, I.stanbul Univ. Fen Fak. Mecm. Ser. A, V44, P39
[2]  
Bugeaud Y., 2004, CAMBRIDGE TRACTS MAT, V160
[3]  
BUNDSCHUH P, 1978, J REINE ANGEW MATH, V299, P411
[4]   ON TRANSCENDENTAL CONTINUED FRACTIONS IN FIELDS OF FORMAL POWER SERIES OVER FINITE FIELDS [J].
Can, Busra ;
Kekec, Gulcan .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (03) :392-403
[5]  
Chaichana T, 2006, THAI J MATH, V4, P163
[6]   ON MAHLER'S CLASSIFICATION OF FORMAL POWER SERIES OVER A FINITE FIELD [J].
Kekec, Gulcan .
MATHEMATICA SLOVACA, 2022, 72 (01) :265-273
[7]  
Kekeç G, 2020, B MATH SOC SCI MATH, V63, P349
[8]   U-NUMBERS IN FIELDS OF FORMAL POWER SERIES OVER FINITE FIELDS [J].
Kekec, Gulcan .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (02) :218-225
[9]  
LEVEQUE WJ, 1953, J LOND MATH SOC, V28, P220
[10]  
Mahler K, 1932, J REINE ANGEW MATH, V166, P118