Constraints on Solar Wind Density and Velocity Based on Coronal Tomography and Parker Solar Probe Measurements

被引:4
|
作者
Bunting, Kaine A. [1 ]
Barnard, Luke [2 ]
Owens, Mathew J. [2 ]
Morgan, Huw [1 ]
机构
[1] Aberystwyth Univ, Dept Phys, Ceredigion SY23 3BZ, Wales
[2] Univ Reading, Dept Meteorol, Reading RG6 6AH, Berks, England
关键词
COMPUTATIONALLY EFFICIENT; INNER HELIOSPHERE; ELECTRON-DENSITY; SLOW; ACCELERATION; TEMPERATURE; MODEL; SUN; STREAMER; ATLAS;
D O I
10.3847/1538-4357/ad1506
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Previous work has established an empirical relationship between densities gained from coronal rotational tomography near the ecliptic plane with solar wind outflow speeds at heliocentric distance r 0 = 8R circle dot. This work aims to include solar wind acceleration, and thus velocity profiles out to 1 au. Inner boundary velocities are given as a function of normalized tomographic densities, rho N , as V0=75*e-5.2*rho N+108 , and typically range from 100 to 180 km s-1. The subsequent acceleration is defined as V(r)=V01+alpha IP1-e-r-r0/rH , with alpha IP ranging between 1.75 and 2.7, and r H between 50 and 35 R circle dot dependent on V 0. These acceleration profiles approximate the distribution of in situ measurements by Parker Solar Probe (PSP) and other measurements at 1 au. Between 2018 November and 2021 September these constraints are applied using the HUXt model and give good agreement with in situ observations at PSP, with a similar to 6% improvement compared with using a simpler constant acceleration model previously considered. Given the known tomographical densities at 8 R circle dot, we extrapolate density to 1 au using the model velocities and assuming mass flux conservation. Extrapolated densities agree well with OMNI measurements. Thus coronagraph-based estimates of densities define the ambient solar wind outflow speed, acceleration, and density from 8 R circle dot to at least 1 au. This sets a constraint on more advanced models, and a framework for forecasting that provides a valid alternative to the use of velocities derived from magnetic field extrapolations.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Exospheric Solar Wind Model Based on Regularized Kappa Distributions for the Electrons Constrained by Parker Solar Probe Observations
    Pierrard, Viviane
    de Bonhome, Maximilien Peters
    Halekas, Jasper
    Audoor, Charline
    Whittlesey, Phyllis
    Livi, Roberto
    PLASMA, 2023, 6 (03) : 518 - 540
  • [22] The Solar Probe ANalyzer-Ions on the Parker Solar Probe
    Livi, Roberto
    Larson, Davin E.
    Kasper, Justin C.
    Abiad, Robert
    Case, A. W.
    Klein, Kristopher G.
    Curtis, David W.
    Dalton, Gregory
    Stevens, Michael
    Korreck, Kelly E.
    Ho, George
    Robinson, Miles
    Tiu, Chris
    Whittlesey, Phyllis L.
    Verniero, Jaye L.
    Halekas, Jasper
    McFadden, James
    Marckwordt, Mario
    Slagle, Amanda
    Abatcha, Mamuda
    Rahmati, Ali
    McManus, Michael D.
    ASTROPHYSICAL JOURNAL, 2022, 938 (02)
  • [23] Solar-wind predictions for the Parker Solar Probe orbit Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations
    Venzmer, M. S.
    Bothmer, V.
    ASTRONOMY & ASTROPHYSICS, 2018, 611
  • [24] Acceleration of polytropic solar wind: Parker Solar Probe observation and one-dimensional model
    Shi, Chen
    Velli, Marco
    Bale, Stuart D.
    Reville, Victor
    Maksimovic, Milan
    Dakeyo, Jean-Baptiste
    PHYSICS OF PLASMAS, 2022, 29 (12)
  • [25] Parker Solar Probe's Measurements of the 29 November 2020 Solar Energetic Particle Event
    Cohen, C. M. S.
    Christian, E. R.
    Cummings, A. C.
    Davis, A. J.
    Desai, M. I.
    de Nolfo, G. A.
    Giacalone, J.
    Hill, M. E.
    Joyce, C. J.
    Labrador, A. W.
    Leske, R. A.
    Matthaeus, W. H.
    McComas, D. J.
    McNutt, R. L., Jr.
    Mewaldt, R. A.
    Mitchell, D. G.
    Mitchell, J. G.
    Rankin, J. S.
    Roelof, E. C.
    Schwadron, N. A.
    Stone, E. C.
    Szalay, J. R.
    Wiedenbeck, M. E.
    Vourlidas, A.
    Bale, S. D.
    Pulupa, M.
    MacDowall, R. J.
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [26] Solar Coronal Plumes and the Fast Solar Wind
    BHOLA N. DWIVEDI
    KLAUS WILHELM
    Journal of Astrophysics and Astronomy, 2015, 36 : 185 - 195
  • [27] Solar Coronal Plumes and the Fast Solar Wind
    Dwivedi, Bhola N.
    Wilhelm, Klaus
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2015, 36 (01) : 185 - 195
  • [28] Highly Alfvenic slow solar wind at 0.3 au during a solar minimum: Helios insights for Parker Solar Probe and Solar Orbiter
    Perrone, D.
    D'Amicis, R.
    De Marco, R.
    Matteini, L.
    Stansby, D.
    Bruno, R.
    Horbury, T. S.
    ASTRONOMY & ASTROPHYSICS, 2020, 633
  • [29] Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe
    Korreck, Kelly E.
    Szabo, Adam
    Chinchilla, Teresa Nieves
    Lavraud, Benoit
    Luhmann, Janet
    Niembro, Tatiana
    Higginson, Aleida
    Alzate, Nathalia
    Wallace, Samantha
    Paulson, Kristoff
    Rouillard, Alexis
    Kouloumvakos, Athanasios
    Poirier, Nicolas
    Kasper, Justin C.
    Case, A. W.
    Stevens, Michael L.
    Bale, Stuart D.
    Pulupa, Marc
    Whittlesey, Phyllis
    Livi, Roberto
    Goetz, Keith
    Larson, Davin
    Malaspina, David M.
    Morgan, Huw
    Narock, Ayris A.
    Schwadron, Nathan A.
    Bonnell, John
    Harvey, Peter
    Wygant, John
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02)
  • [30] Analysis of Magnetohydrodynamic Perturbations in the Radial-field Solar Wind from Parker Solar Probe Observations
    Zhao, S. Q.
    Yan, Huirong
    Liu, Terry Z.
    Liu, Mingzhe
    Shi, Mijie
    ASTROPHYSICAL JOURNAL, 2021, 923 (02)