Parameter estimation with reluctant quantum walks: a maximum likelihood approach

被引:0
作者
Ellinas, Demosthenes [1 ,3 ]
Jarvis, Peter D. [2 ]
Pearce, Matthew [2 ]
机构
[1] Tech Univ Crete, Sch ECE QLab, Khania, Greece
[2] Univ Tasmania, Sch Nat Sci, Hobart, Tas, Australia
[3] Monash Univ, Sch Phys & Astron, Clayton, Vic, Australia
关键词
quantum walk; analytic solution; quantum estimation; mamimum likelihood; quantum channel;
D O I
10.1088/1402-4896/ad19ff
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parametric maximum likelihood estimation problem is addressed in the context of quantum walk theory for quantum walks on the lattice of integers. A coin action is presented, with the real parameter theta to be estimated identified with the angular argument of an orthogonal reshuffling matrix. We provide analytic results for the probability distribution for a quantum walker to be displaced by d units from its initial position after k steps. For k large, we show that the likelihood is sharply peaked at a displacement determined by the ratio d/k which is correlated with the reshuffling parameter theta. We suggest that this 'reluctant walker' behaviour provides the framework for maximum likelihood estimation analysis, allowing for robust parameter estimation of theta via return probabilities of closed evolution loops and quantum measurements of the position of quantum walker with 'reluctance index' r = d/k.
引用
收藏
页数:14
相关论文
共 45 条
  • [1] Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, pp 72
  • [2] Aharonov D., 2001, P 33 ANN ACM S THEOR, P50, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
  • [3] QUANTUM RANDOM-WALKS
    AHARONOV, Y
    DAVIDOVICH, L
    ZAGURY, N
    [J]. PHYSICAL REVIEW A, 1993, 48 (02): : 1687 - 1690
  • [4] Ambainis A., 2001, P 33 ACM S THEORY CO, P37, DOI 10.1145/380752.380757
  • [5] Multiparameter quantum metrology with discrete-time quantum walks
    Annabestani, Mostafa
    Hassani, Majid
    Tamascelli, Dario
    Paris, Matteo G. A.
    [J]. PHYSICAL REVIEW A, 2022, 105 (06)
  • [6] [Anonymous], 2005, Algebraic Statistics for Computational Biology
  • [7] SL(2,C), SU(2), AND CHEBYSHEV POLYNOMIALS
    BACRY, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (10) : 2259 - 2267
  • [8] Pseudo memory effects, majorization and entropy in quantum random walks
    Bracken, AJ
    Ellinas, D
    Tsohantjis, I
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (08): : L91 - L97
  • [9] Generalized uncertainty relations: Theory, examples, and Lorentz invariance
    Braunstein, SL
    Caves, CM
    Milburn, GJ
    [J]. ANNALS OF PHYSICS, 1996, 247 (01) : 135 - 173
  • [10] HOW LARGE A SAMPLE IS NEEDED FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR TO BE APPROXIMATELY GAUSSIAN
    BRAUNSTEIN, SL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (13): : 3813 - 3826