A Spectral Collocation Method for Solving the Non-Linear Distributed-Order Fractional Bagley-Torvik Differential Equation

被引:7
作者
Amin, Ahmed Z. [1 ]
Abdelkawy, Mohamed A. [2 ,3 ]
Solouma, Emad [2 ,3 ]
Al-Dayel, Ibrahim [2 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Malaysia
[2] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11564, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf 2722165, Egypt
关键词
spectral collocation method; fractional Bagley-Torvik differential equation; Caputo fractional derivative; shifted Legendre polynomials; BEHAVIOR;
D O I
10.3390/fractalfract7110780
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the issues in numerical solution analysis is the non-linear distributed-order fractional Bagley-Torvik differential equation (DO-FBTE) with boundary and initial conditions. We solve the problem by proposing a numerical solution based on the shifted Legendre Gauss-Lobatto (SL-GL) collocation technique. The solution of the DO-FBTE is approximated by a truncated series of shifted Legendre polynomials, and the SL-GL collocation points are employed as interpolation nodes. At the SL-GL quadrature points, the residuals are computed. The DO-FBTE is transformed into a system of algebraic equations that can be solved using any conventional method. A set of numerical examples is used to verify the proposed scheme's accuracy and compare it to existing findings.
引用
收藏
页数:19
相关论文
共 34 条
  • [1] Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (01)
  • [2] Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional
    Abdelkawy, M. A.
    Alyami, S. A.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 151
  • [3] Numerical solution of a fractional-order Bagley-Torvik equation by quadratic finite element method
    Ali, Hazrat
    Kamrujjaman, Md.
    Shirin, Afroza
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 66 (1-2) : 351 - 367
  • [4] Legendre-Gauss-Lobatto collocation method for solving multi-dimensional systems of mixed Volterra-Fredholm integral equations
    Amin, A. Z.
    Abdelkawy, M. A.
    Amin, Amr Kamel
    Lopes, Antonio M.
    Alluhaybi, Abdulrahim A.
    Hashim, I.
    [J]. AIMS MATHEMATICS, 2023, 8 (09): : 20871 - 20891
  • [5] Spectral technique with convergence analysis for solving one and two-dimensional mixed Volterra-Fredholm integral equation
    Amin, A. Z.
    Amin, A. K.
    Abdelkawy, M. A. A.
    Alluhaybi, A. A. A.
    Hashim, I. A.
    [J]. PLOS ONE, 2023, 18 (05):
  • [6] A Chebyshev collocation method for solving the non-linear variable-order fractional Bagley-Torvik differential equation
    Amin, Ahmed Z.
    Lopes, Antonio M.
    Hashim, Ishak
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (05) : 1613 - 1630
  • [7] Numerical Solution of the Distributed-Order Fractional Bagley-Torvik Equation
    Aminikhah, Hossein
    Sheikhani, Amir Hosein Refahi
    Houlari, Tahereh
    Rezazadeh, Hadi
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) : 760 - 765
  • [8] A space-time spectral collocation algorithm for the variable order fractional wave equation
    Bhrawy, A. H.
    Doha, E. H.
    Alzaidy, J. F.
    Abdelkawy, M. A.
    [J]. SPRINGERPLUS, 2016, 5
  • [9] Canuto C., 1988, Spectral Methods: Fundamentals in Single Domains
  • [10] Efficient spectral-Galerkin methods for systems of coupled second-order equations and their applications
    Chen, Feng
    Shen, Jie
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (15) : 5016 - 5028