Synergistic effect of perovskites and nitrogen-doped carbon hybrid materials for improving oxygen reduction reaction

被引:0
|
作者
Rohib, R. [1 ,2 ]
Rehman, Saeed Ur [1 ]
Lee, Eunjik [1 ]
Kim, Changki [1 ]
Lee, Hyunjoon [1 ]
Lee, Seung-Bok [1 ]
Park, Gu-Gon [1 ,2 ]
机构
[1] Korea Inst Energy Res KIER, Fuel Cell Lab, 152 Gajeong Ro, Daejeon 34129, South Korea
[2] Univ Sci & Technol, Dept Energy Engn, 217 Gajeong Ro, Daejeon 34113, South Korea
基金
新加坡国家研究基金会;
关键词
GRAPHENE; OXIDES; NANOPARTICLES; CATALYSTS; EFFICIENT; COBALT; IRON; ORR; CO;
D O I
10.1038/s41598-023-47304-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fundamental understanding of the electrochemical behavior of hybrid perovskite and nitrogen-doped (N-doped) carbon is essential for the development of perovskite-based electrocatalysts in various sustainable energy device applications. In particular, the selection and modification of suitable carbon support are important for enhancing the oxygen reduction reaction (ORR) of non-platinum group metal electrocatalysts in fuel cells. Herein, we address hybrid materials composed of three representative N-doped carbon supports (BP-2000, Vulcan XC-72 and P-CNF) with valid surface areas and different series of single, double and triple perovskites: Ba0.5Sr0.5Co0.8Fe0.2O3-delta, (Pr0.5Ba0.5)CoO3-delta, and Nd1.5Ba1.5CoFeMnO9-delta (NBCFM), respectively. The combination of NBCFM and N-doped BP-2000 produces a half-wave potential of 0.74 V and a current density of 5.42 mA cm(-2) at 0.5 V versus reversible hydrogen electrode, comparable to those of the commercial Pt/C electrocatalyst (0.76 V, 5.21 mA cm(-2)). Based on physicochemical and electrochemical analyses, we have confirmed a significant improvement in the catalytic performance of low-conductivity perovskite catalyst in the ORR when nitrogen-doped carbon with enhanced electrical conductivity is introduced. Furthermore, it has been observed that nitrogen dopants play active sites, contributing to additional performance enhancement when hybridized with perovskite.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Astragali Radix-derived nitrogen-doped porous carbon: An efficient electrocatalyst for the oxygen reduction reaction
    Li, Jinmei
    Wang, Wei
    Wang, Fengxia
    Kang, Yumao
    Tan, Ting
    Lei, Ziqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (02) : 551 - 561
  • [42] Identification of Efficient Active Sites in Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction
    Xu, Zhengyu
    Zhou, Ziyu
    Li, Boyang
    Wang, Guofeng
    Leu, Paul W.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (16) : 8689 - 8696
  • [43] Ruthenium Supported on Nitrogen-Doped Carbon Nanotubes for the Oxygen Reduction Reaction in Alkaline Media
    Mabena, L. F.
    Modibedi, R. M.
    Ray, S. Sinha
    Coville, N. J.
    FUEL CELLS, 2012, 12 (05) : 862 - 868
  • [44] Nitrogen-doped amorphous carbon with effective electrocatalytic activity toward oxygen reduction reaction
    He, Chuansheng
    Li, Lin
    Zhang, Tingting
    Sun, Fengzhan
    Wang, Chao
    Lin, Yuqing
    MATERIALS RESEARCH BULLETIN, 2016, 84 : 118 - 123
  • [45] Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction
    Zhong, Haobin
    Shi, Changwei
    Li, Jiantao
    Yu, Ruohan
    Yu, Qiang
    Liu, Haoyun
    Yao, Yao
    Wu, Jinsong
    Zhou, Liang
    Mai, Liqiang
    CHEMICAL COMMUNICATIONS, 2020, 56 (32) : 4488 - 4491
  • [46] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Studt, Felix
    CATALYSIS LETTERS, 2013, 143 (01) : 58 - 60
  • [47] Nitrogen-doped carbon coated palygorskite as an efficient electrocatalyst support for oxygen reduction reaction
    Wang, Rongfang
    Jia, Jingchun
    Li, Hao
    Li, Xusheng
    Wang, Hui
    Chang, Yanming
    Kang, Jian
    Lei, Ziqiang
    ELECTROCHIMICA ACTA, 2011, 56 (12) : 4526 - 4531
  • [48] A facile synthesis for nitrogen-doped carbon catalyst with high activity of oxygen reduction reaction in acidic media
    Hou, Chenjun
    Zhang, Xuelin
    Yuan, Weijian
    Zhang, Yufeng
    Deng, Huichao
    Liu, Xiaowei
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (13) : 19574 - 19585
  • [49] Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction
    Dumont, Joseph H.
    Martinez, Ulises
    Artyushkova, Kateryna
    Purdy, Geraldine M.
    Dattelbaum, Andrew M.
    Zelenay, Piotr
    Mohite, Aditya
    Atanassov, Plamen
    Gupta, Gautam
    ACS APPLIED NANO MATERIALS, 2019, 2 (03): : 1675 - 1682
  • [50] Thermodynamics of the Oxygen Reduction Reaction on Surfaces of Nitrogen-Doped Graphene
    Kislenko, V. A.
    Pavlov, S. V.
    Kislenko, S. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 97 (11) : 2354 - 2361