Multivariate modeling of magnetic resonance biomarkers and clinical outcome measures for Duchenne muscular dystrophy clinical trials

被引:7
作者
Kim, Sarah [1 ,8 ]
Willcocks, Rebecca J. [2 ]
Daniels, Michael J. [3 ]
Morales, Juan Francisco [1 ]
Yoon, Deok Yong [1 ]
Triplett, William T. [2 ]
Barnard, Alison M. [2 ]
Conrado, Daniela J. [4 ]
Aggarwal, Varun [5 ]
Belfiore-Oshan, Ramona [5 ]
Martinez, Terina N. [5 ]
Walter, Glenn A. [6 ]
Rooney, William D. [7 ]
Vandenborne, Krista [2 ]
机构
[1] Univ Florida, Coll Pharm, Ctr Pharmacometr & Syst Pharmacol, Dept Pharmaceut, Orlando, FL USA
[2] Univ Florida, Dept Phys Therapy, Gainesville, FL USA
[3] Univ Florida, Dept Stat, Gainesville, FL USA
[4] E Quantify LLC, La Jolla, CA USA
[5] Crit Path Inst, Tucson, AZ USA
[6] Univ Florida, Dept Physiol & Aging, Gainesville, FL USA
[7] Oregon Hlth & Sci Univ, Adv Imaging Res Ctr, Portland, OR USA
[8] 6550 Sanger Rd,Off 471, Orlando, FL 32827 USA
来源
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY | 2023年 / 12卷 / 10期
关键词
HANDLING DATA; MRI; QUANTIFICATION; QUALITY; GROWTH; LIMIT;
D O I
10.1002/psp4.13021
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Although regulatory agencies encourage inclusion of imaging biomarkers in clinical trials for Duchenne muscular dystrophy (DMD), industry receives minimal guidance on how to use these biomarkers most beneficially in trials. This study aims to identify the optimal use of muscle fat fraction biomarkers in DMD clinical trials through a quantitative disease-drug-trial modeling and simulation approach. We simultaneously developed two multivariate models quantifying the longitudinal associations between 6-minute walk distance (6MWD) and fat fraction measures from vastus lateralis and soleus muscles. We leveraged the longitudinal individual-level data collected for 10 years through the ImagingDMD study. Age of the individuals at assessment was chosen as the time metric. After the longitudinal dynamic of each measure was modeled separately, the selected univariate models were combined using correlation parameters. Covariates, including baseline scores of the measures and steroid use, were assessed using the full model approach. The nonlinear mixed-effects modeling was performed in Monolix. The final models showed reasonable precision of the parameter estimates. Simulation-based diagnostics and fivefold cross-validation further showed the model's adequacy. The multivariate models will guide drug developers on using fat fraction assessment most efficiently using available data, including the widely used 6MWD. The models will provide valuable information about how individual characteristics alter disease trajectories. We will extend the multivariate models to incorporate trial design parameters and hypothetical drug effects to inform better clinical trial designs through simulation, which will facilitate the design of clinical trials that are both more inclusive and more conclusive using fat fraction biomarkers.
引用
收藏
页码:1437 / 1449
页数:13
相关论文
共 36 条
  • [1] Likelihood based approaches to handling data below the quantification limit using NONMEM VI
    Ahn, Jae Eun
    Karlsson, Mats O.
    Dunne, Adrian
    Ludden, Thomas M.
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2008, 35 (04) : 401 - 421
  • [2] [Anonymous], 2020, Final Evidence Report
  • [3] Longitudinal timed function tests in Duchenne muscular dystrophy: ImagingDMD cohort natural history
    Arora, Harneet
    Willcocks, Rebecca J.
    Lott, Donovan J.
    Harrington, Ann T.
    Senesac, Claudia R.
    Zilke, Kirsten L.
    Daniels, Michael J.
    Xu, Dandan
    Tennekoon, Gihan I.
    Finanger, Erika L.
    Russman, Barry S.
    Finkel, Richard S.
    Triplett, William T.
    Byrne, Barry J.
    Walter, Glenn A.
    Sweeney, H. Lee
    Vandenborne, Krista
    [J]. MUSCLE & NERVE, 2018, 58 (05) : 631 - 638
  • [4] Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS
    Arpan, Ishu
    Willcocks, Rebecca J.
    Forbes, Sean C.
    Finkel, Richard S.
    Lott, Donovan J.
    Rooney, William D.
    Triplett, William T.
    Senesac, Claudia R.
    Daniels, Michael J.
    Byrne, Barry J.
    Finanger, Erika L.
    Russman, Barry S.
    Wang, Dah-Jyuu
    Tennekoon, Gihan I.
    Walter, Glenn A.
    Sweeney, H. L.
    Vandenborne, Krista
    [J]. NEUROLOGY, 2014, 83 (11) : 974 - 980
  • [5] Evaluating Genetic Modifiers of Duchenne Muscular Dystrophy Disease Progression Using Modeling and MRI
    Barnard, Alison M.
    Hammers, David W.
    Triplett, William T.
    Kim, Sarah
    Forbes, Sean C.
    Willcocks, Rebecca J.
    Daniels, Michael J.
    Senesac, Claudia R.
    Lott, Donovan J.
    Arpan, Ishu
    Rooney, William D.
    Wang, Richard T.
    Nelson, Stanley F.
    Sweeney, Lee
    Vandenborne, Krista
    Walter, Glenn A.
    [J]. NEUROLOGY, 2022, 99 (21) : E2406 - E2416
  • [6] MR biomarkers predict clinical function in Duchenne muscular dystrophy
    Barnard, Alison M.
    Willcocks, Rebecca J.
    Triplett, William T.
    Forbes, Sean C.
    Daniels, Michael J.
    Chakraborty, Saptarshi
    Lott, Donovan J.
    Senesac, Claudia R.
    Finanger, Erika L.
    Harrington, Ann T.
    Tennekoon, Gihan
    Arora, Harneet
    Wang, Dah-Jyuu
    Sweeney, H. Lee
    Rooney, William D.
    Walter, Glenn A.
    Vandenborne, Krista
    [J]. NEUROLOGY, 2020, 94 (09) : E897 - E909
  • [7] Imaging respiratory muscle quality and function in Duchenne muscular dystrophy
    Barnard, Alison M.
    Lott, Donovan J.
    Batra, Abhinandan
    Triplett, William T.
    Forbes, Sean C.
    Riehl, Samuel L.
    Willcocks, Rebecca J.
    Smith, Barbara K.
    Vandenborne, Krista
    Walter, Glenn A.
    [J]. JOURNAL OF NEUROLOGY, 2019, 266 (11) : 2752 - 2763
  • [8] Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy
    Barnard, Alison M.
    Willcocks, Rebecca J.
    Finanger, Erika L.
    Daniels, Michael J.
    Triplett, William T.
    Rooney, William D.
    Lott, Donovan J.
    Forbes, Sean C.
    Wang, Dah-Jyuu
    Senesacl, Claudia R.
    Harrington, Ann T.
    Finkel, Richard S.
    Russman, Barry S.
    Byrne, Barry J.
    Tennekoon, Gihan I.
    Walter, Glenn A.
    Sweeney, H. Lee
    Vandenborne, Krista
    [J]. PLOS ONE, 2018, 13 (03):
  • [9] Role of Disease Progression Models in Drug Development
    Barrett, Jeffrey S.
    Nicholas, Tim
    Azer, Karim
    Corrigan, Brian W.
    [J]. PHARMACEUTICAL RESEARCH, 2022, 39 (08) : 1803 - 1815
  • [10] Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models
    Bergstrand, Martin
    Hooker, Andrew C.
    Wallin, Johan E.
    Karlsson, Mats O.
    [J]. AAPS JOURNAL, 2011, 13 (02): : 143 - 151