3D Quantum Gravity Partition Function at Three Loops

被引:1
|
作者
Leston, Mauricio [1 ,2 ,3 ]
Goya, Andres [1 ]
Perez-Nadal, Guillem [2 ,3 ]
Passaglia, Mario [2 ,3 ]
Giribet, Gaston [4 ]
机构
[1] Inst Astron & Fis Espacio IAFE CONICET, IAFE, Ciudad Univ, RA-1428 Buenos Aires, Argentina
[2] Univ Buenos Aires FCEN UBA, Dept Fis, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, Argentina
[3] IFIBA CONICET, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, Argentina
[4] NYU, Dept Phys, 726 Broadway, New York, NY 10003 USA
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1103/PhysRevLett.131.181601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The partition function of three-dimensional quantum gravity has been argued to be one-loop exact. Here, we verify the vanishing of higher orders in perturbation theory by explicit computation in the second-order metric formulation at three loops. The number of one-particle irreducible Feynman diagrams involving both gravitons and ghosts turns out to be 17. Using dimensional regularization, we solve all the diagrams. At two loops, we find that all such diagrams vanish separately after regularization. At three loops, in contrast, a series of remarkable cancellations between different diagrams takes place, with nine diagrams beautifully conspiring to yield a vanishing result. Our techniques are suitable to be applied to higher loops as well as to similar computations in higher dimensions.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] 3D Quantum Gravity Partition Function at Three Loops
    Leston, Mauricio
    Goya, Andres
    Perez-Nadal, Guillem
    Passaglia, Mario
    Giribet, Gaston
    PHYSICAL REVIEW LETTERS, 2023, 131 (08)
  • [2] Non-perturbative 3D quantum gravity: quantum boundary states and exact partition function
    Goeller, Christophe
    Livine, Etera R.
    Riello, Aldo
    GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (03)
  • [3] Non-perturbative 3D quantum gravity: quantum boundary states and exact partition function
    Christophe Goeller
    Etera R. Livine
    Aldo Riello
    General Relativity and Gravitation, 2020, 52
  • [4] 2D quantum gravity at three loops: A counterterm investigation
    Leduc, Laetitia
    Bilal, Adel
    NUCLEAR PHYSICS B, 2016, 903 : 226 - 261
  • [5] Hyperbolicity of partition function and quantum gravity
    Hikami, K
    NUCLEAR PHYSICS B, 2001, 616 (03) : 537 - 548
  • [6] The partition function of a ferromagnet up to three loops
    Hofmann, C. P.
    XIV MEXICAN SCHOOL ON PARTICLES AND FIELDS, 2011, 287
  • [7] 2D quantum gravity partition function on the fluctuating sphere
    Giribet, Gaston
    Leoni, Matias
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [8] 2D quantum gravity partition function on the fluctuating sphere
    Gaston Giribet
    Matías Leoni
    Journal of High Energy Physics, 2022
  • [9] Quantum gravity partition functions in three dimensions
    Alexander Maloney
    Edward Witten
    Journal of High Energy Physics, 2010
  • [10] Quantum gravity partition functions in three dimensions
    Maloney, Alexander
    Witten, Edward
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (02):