Enhancement of ultimate tensile strength and ductility of copper matrix composites using a low content of single-wall carbon nanotubes

被引:7
作者
Wang, Xiaoer [1 ,2 ]
Zhu, Tianxiang [3 ]
Deng, Zhen-Yan [1 ,2 ]
Zhao, Xinluo [1 ,2 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Low Dimens Carbon & Device Phys, Shanghai 200444, Peoples R China
[3] Changzhou Inst Technol, Sch Sci, Changzhou 213032, Peoples R China
基金
中国国家自然科学基金;
关键词
Single-wall carbon nanotube; Cu matrix composite; Mechanical property; Electrical conductivity; Interface bonding; MECHANICAL-PROPERTIES; LOAD-TRANSFER; SHEAR-LAG; MICROSTRUCTURE; DENSIFICATION; CERAMICS; MODEL; CONDUCTIVITY; BEHAVIOR;
D O I
10.1016/j.jallcom.2023.172225
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-wall carbon nanotube (SWCNT) reinforced copper (Cu) matrix composites were fabricated by a simple procedure of rotating mixing and then spark plasma sintering (SPS). It was found that addition of SWCNTs as low as 0.05 wt% can increase the ultimate tensile strength (223.5 MPa) and elongation rate (48.0%) of composites by 20.8% and 57.9%, respectively, relative to those (185 MPa and 30.4%) of pure Cu material, while the composite electrical conductivity retained a high value of 94.3% International Annealed Copper Standard (IACS). Mechanism analyses revealed that there are nanometer Ni particles tightly attached to SWCNTs, which were formed in situ during SWCNT growth by arc discharge method. These nanometer Ni particles promoted the bonding between SWCNTs and Cu matrix, leading to a fracture-mode change from intergranular in pure Cu material to ductile in the composites. The related factors to influence the microstructure of composites were discussed as well.
引用
收藏
页数:8
相关论文
共 60 条
[1]   Mass production of single-wall carbon nanotubes by the arc plasma jet method [J].
Ando, Y ;
Zhao, X ;
Hirahara, K ;
Suenaga, K ;
Bandow, S ;
Iijima, S .
CHEMICAL PHYSICS LETTERS, 2000, 323 (5-6) :580-585
[2]   Sintering behaviour of Copper/carbon nanotube composites and their characterization [J].
Babu, R. Vignesh ;
Kanagaraj, S. .
ADVANCED POWDER TECHNOLOGY, 2019, 30 (10) :2200-2210
[3]   Electromigration studies of Cu/carbon nanotube composite interconnects using Blech structure [J].
Chai, Yang ;
Chan, Philip C. H. ;
Fu, Yunyi ;
Chuang, Y. C. ;
Liu, C. Y. .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (09) :1001-1003
[4]   Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites [J].
Chen, B. ;
Shen, J. ;
Ye, X. ;
Jia, L. ;
Li, S. ;
Umeda, J. ;
Takahashi, M. ;
Kondoh, K. .
ACTA MATERIALIA, 2017, 140 :317-325
[5]   Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests [J].
Chen, Biao ;
Li, Shufeng ;
Imai, Hisashi ;
Jia, Lei ;
Umeda, Junko ;
Takahashi, Makoto ;
Kondoh, Katsuyoshi .
COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 113 :1-8
[6]   Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites [J].
Chen, Pingan ;
Zhang, Jian ;
Shen, Qiang ;
Luo, Guoqiang ;
Dai, Yang ;
Wang, Chuanbing ;
Li, Meijuan ;
Zhang, Lianmeng .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (04) :2447-2452
[7]   Enhancing the strength of carbon nanotubes reinforced copper matrix composites by optimizing the interface structure and dispersion uniformity [J].
Chen, Xiaofeng ;
Tao, Jingmei ;
Yi, Jianhong ;
Liu, Yichun ;
Bao, Rui ;
Li, Caiju ;
Tan, Songlin ;
You, Xin .
DIAMOND AND RELATED MATERIALS, 2018, 88 :74-84
[8]   Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process [J].
Daoush, Walid M. ;
Lim, Byung K. ;
Mo, Chan B. ;
Nam, Dong H. ;
Hong, Soon H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 513-14 :247-253
[9]   Mechanical properties and microstructure characterization of well-dispersed carbon nanotubes reinforced copper matrix composites [J].
Deng, Hui ;
Yi, Jianhong ;
Xia, Chao ;
Yi, Yi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 :260-268
[10]   Creep and creep-recovery behavior in silicon-carbide-particle-reinforced alumina [J].
Deng, ZY ;
Shi, JL ;
Zhang, YF ;
Lai, TR ;
Guo, JK .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (04) :944-952