Thiophene-sulfur doping in nitrogen-rich porous carbon enabling high-ICE/rate anode materials for potassium-ion storage

被引:8
作者
Qiu, Chuang [1 ]
Kumar, Anuj [2 ]
Qiu, Daping [3 ]
Tabish, Mohammad [1 ]
Zhang, Jiapeng [1 ]
Jiang, Zhijie [1 ]
Li, Ang [1 ]
Yasin, Ghulam [4 ]
Chen, Xiaohong [1 ]
Song, Huaihe [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
[2] GLA Univ, Dept Chem, Nanotechnol Res Lab, Mathura 281406, Uttar Pradesh, India
[3] Peking Univ, Sch Mat Sci & Engn, Beijing Innovat Ctr Engn Sci & Adv Technol, Beijing Key Lab Magnetoelect Mat & Devices, Beijing 100871, Peoples R China
[4] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1039/d3ta04468h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfur doping in carbon materials is generally considered to enhance potassium storage capacity and reaction kinetics. However, the contribution of sulfur doping to initial coulombic efficiency (ICE) is still lacking to date. Additionally, previously reported sulfur-doped carbons usually contain multiple sulfur configurations (such as thiophene-type sulfur, C-SOx-C and C-SH), which hinders the investigation of the role of thiophene-type sulfur in potassium ion storage. In this work, we have successfully prepared thiophene-sulfur-doped nitrogen-rich porous carbons with different sulfur contents via a simple high-temperature sulfurization strategy assisted by pre-carbonization. The K half-cell tests show that thiophene-sulfur doping can significantly elevate the ICE of the samples and that there is a positive correlation between the ICE of the samples and thiophene-sulfur doping levels. The higher ICE (60% vs. 42%) of the optimized thiophene-sulfur-doped nitrogen-rich porous carbon (S1-NC) than the sulfur-free nitrogen-rich porous carbon (NC) derives from the increased reversibility of the electrode material, which is demonstrated by the ex situ XPS and in situ Raman tests. Moreover, the optimized S1-NC delivers nearly twice the specific capacity (424.0 mA h g-1 at 0.1 A g-1) over NC, ultra-fast rate performance (197.2 mA h g-1 at 10 A g-1) and excellent cycling stability (206 mA h g-1 with 81.7% retention after 2000 cycles at 2 A g-1), which can be attributed to numerous additional active sites and enhanced potassium storage kinetics (including elevated diffusion coefficients and ionic conductivity, as well as a high percentage of capacitive behavior) inspired by the thiophene-sulfur doping. This work offers an insight into the contribution of thiophene-sulfur doping to the ICE/specific capacity/potassium storage kinetics of carbon anode materials. Sulfur doping in carbon materials is generally considered to enhance initial coulombic efficiency, potassium storage capacity and reaction kinetics.
引用
收藏
页码:22187 / 22197
页数:11
相关论文
共 62 条
  • [1] Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode
    Bin, De-Shan
    Lin, Xi-Jie
    Sun, Yong-Gang
    Xu, Yan-Song
    Zhang, Ke
    Cao, An-Min
    Wan, Li-Jun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (23) : 7127 - 7134
  • [2] Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage
    Cai, Congcong
    Chen, Yongan
    Hu, Ping
    Zhu, Ting
    Li, Xinyuan
    Yu, Qiang
    Zhou, Liang
    Yang, Xiaoyu
    Mai, Liqiang
    [J]. SMALL, 2022, 18 (06)
  • [3] Crystal Facet and Architecture Engineering of Metal Oxide Nanonetwork Anodes for High-Performance Potassium Ion Batteries and Hybrid Capacitors
    Chang, Chao-Hung
    Chen, Kuan-Ting
    Hsieh, Yi-Yen
    Chang, Che-Bin
    Tuan, Hsing-Yu
    [J]. ACS NANO, 2022, 16 (01) : 1486 - 1501
  • [4] Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization
    Chen, Dequan
    Zhang, Wen
    Luo, Kangying
    Song, Yang
    Zhong, Yanjun
    Liu, Yuxia
    Wang, Gongke
    Zhong, Benhe
    Wu, Zhenguo
    Guo, Xiaodong
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) : 2244 - 2262
  • [5] Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices
    Chen, Shaohua
    Qiu, Ling
    Cheng, Hui-Ming
    [J]. CHEMICAL REVIEWS, 2020, 120 (05) : 2811 - 2878
  • [6] Chen Y, 2022, Adv. Energy Mater, V12, DOI DOI 10.1002/AENM.202202851
  • [7] Defect-Selectivity and "Order-in-Disorder" Engineering in Carbon for Durable and Fast Potassium Storage
    Chen, Yaxin
    Xi, Baojuan
    Huang, Man
    Shi, Liluo
    Huang, Shaozhuan
    Guo, Nannan
    Li, Da
    Ju, Zhicheng
    Xiong, Shenglin
    [J]. ADVANCED MATERIALS, 2022, 34 (07)
  • [8] Hollow Nanotubes of N-Doped Carbon on CoS
    Chen, Yuming
    Li, Xiaoyan
    Park, Kyusung
    Zhou, Limin
    Huang, Haitao
    Mai, Yiu-Wing
    Goodenough, John B.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (51) : 15831 - 15834
  • [9] Balance of sulfur doping content and conductivity of hard carbon anode for high-performance K-ion storage
    Chi, Chunlei
    Liu, Zheng
    Lu, Xiaolong
    Meng, Yu
    Huangfu, Chao
    Yan, Yingchun
    Qiu, Zhipeng
    Qi, Bin
    Wang, Guanwen
    Pang, Huan
    Wei, Tong
    Fan, Zhuangjun
    [J]. ENERGY STORAGE MATERIALS, 2023, 54 : 668 - 679
  • [10] Zn2HgP2S8: A Wide Bandgap Hg-Based Infrared Nonlinear Optical Material with Large Second-Harmonic Generation Response
    Chu, Yu
    Wang, Hongshan
    Abutukadi, Tudi
    Li, Zhi
    Mutailipu, Miriding
    Su, Xin
    Yang, Zhihua
    Li, Junjie
    Pan, Shilie
    [J]. SMALL, 2023, 19 (46)