Controlled Synthesis and Accurate Doping of Wafer-Scale 2D Semiconducting Transition Metal Dichalcogenides

被引:19
|
作者
Li, Xiaohui [1 ]
Yang, Junbo [1 ]
Sun, Hang [1 ]
Huang, Ling [1 ]
Li, Hui [1 ]
Shi, Jianping [1 ]
机构
[1] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
accurate doping; controlled synthesis; electronic devices; semiconducting transition metal dichalcogenides; wafer-scale materials; 2-DIMENSIONAL MATERIALS; GRAIN-BOUNDARIES; EPITAXIAL-GROWTH; VAPOR-DEPOSITION; SINGLE-CRYSTALS; MONOLAYER MOS2; HIGH-QUALITY; GRAPHENE; TEMPERATURE; WS2;
D O I
10.1002/adma.202305115
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
2D semiconducting transition metal dichalcogenide (TMDCs) possess atomically thin thickness, a dangling-bond-free surface, flexible band structure, and silicon-compatible feature, making them one of the most promising channels for constructing state-of-the-art field-effect transistors in the post-Moore's era. However, the existing 2D semiconducting TMDCs fall short of meeting the industry criteria for practical applications in electronics due to their small domain size and the lack of an effective approach to modulate intrinsic physical properties. Therefore, it is crucial to prepare and dope 2D semiconducting TMDCs single crystals with wafer size. In this review, the up-to-date progress regarding the wafer-scale growth of 2D semiconducting TMDC polycrystalline and single-crystal films is systematically summarized. The domain orientation control of 2D TMDCs and the seamless stitching of unidirectionally aligned 2D islands by means of substrate design are proposed. In addition, the accurate and uniform doping of 2D semiconducting TMDCs and the effect on electronic device performances are also discussed. Finally, the dominating challenges pertaining to the enhancement of the electronic device performances of TMDCs are emphasized, and further development directions are put forward. This review provides a systematic and in-depth summary of high-performance device applications of 2D semiconducting TMDCs. The up-to-date growth strategies for the controlled synthesis of wafer-scale 2D semiconducting TMDCs polycrystalline and single-crystal films are systematically summarized. The large-area accurate doping of 2D semiconducting TMDCs and its effect on the device performances are discussed. The challenges regarding the improvement of electronic device performances of 2D semiconducting TMDCs are highlighted, and the further research directions are proposed.image
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Wafer-Scale Uniform Synthesis of 2D Transition Metal Dichalcogenides Single Crystals via Chemical Vapor Deposition
    Yang, Pengfei
    Zhu, Lijie
    Zhou, Fan
    Zhang, Yanfeng
    ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (02): : 161 - 174
  • [2] Wafer-Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection
    Jeon, Hye Yoon
    Song, Da Som
    Shin, Rosa
    Kwon, Yeong Min
    Jo, Hyeong-ku
    Lee, Do Hyung
    Lee, Eunji
    Jang, Moonjeong
    So, Hee-Soo
    Kang, Saewon
    Yim, Soonmin
    Myung, Sung
    Lee, Sun Sook
    Yoon, Dae Ho
    Kim, Chang Gyoun
    Lim, Jongsun
    Song, Wooseok
    SMALL, 2024, 20 (33)
  • [3] Growth of Wafer-Scale Single-Crystal 2D Semiconducting Transition Metal Dichalcogenide Monolayers
    Singh, Jitendra
    Astarini, Nadiya Ayu
    Tsai, Meng-Lin
    Venkatesan, Manikandan
    Kuo, Chi-Ching
    Yang, Chan-Shan
    Yen, Hung-Wei
    ADVANCED SCIENCE, 2024, 11 (11)
  • [4] Toward Wafer-Scale Production of 2D Transition Metal Chalcogenides
    Wang, Peijian
    Yang, Deren
    Pi, Xiaodong
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (08)
  • [5] Substitutional doping in 2D transition metal dichalcogenides
    Leyi Loh
    Zhepeng Zhang
    Michel Bosman
    Goki Eda
    Nano Research, 2021, 14 : 1668 - 1681
  • [6] Substitutional doping in 2D transition metal dichalcogenides
    Loh, Leyi
    Zhang, Zhepeng
    Bosman, Michel
    Eda, Goki
    NANO RESEARCH, 2021, 14 (06) : 1668 - 1681
  • [7] Hypotaxy of wafer-scale single-crystal transition metal dichalcogenides
    Moon, Donghoon
    Lee, Wonsik
    Lim, Chaesung
    Kim, Jinwoo
    Kim, Jiwoo
    Jung, Yeonjoon
    Choi, Hyun-Young
    Choi, Won Seok
    Kim, Hangyel
    Baek, Ji-Hwan
    Kim, Changheon
    Joo, Jaewoong
    Oh, Hyun-Geun
    Jang, Hajung
    Watanabe, Kenji
    Taniguchi, Takashi
    Bae, Sukang
    Son, Jangyup
    Ryu, Huije
    Kwon, Junyoung
    Cheong, Hyeonsik
    Han, Jeong Woo
    Jang, Hyejin
    Lee, Gwan-Hyoung
    NATURE, 2025, 638 (8052) : 957 - 964
  • [8] Wafer-scale engineering of two-dimensional transition metal dichalcogenides
    Lan, Xiang
    Cheng, Yingliang
    Yang, Xiangdong
    Zhang, Zhengwei
    CHIP, 2023, 2 (03):
  • [9] Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides
    Wang, Junyong
    Verzhbitskiy, Ivan
    Eda, Goki
    ADVANCED MATERIALS, 2018, 30 (47)
  • [10] Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides
    Hongwei TANG
    Haima ZHANG
    Xinyu CHEN
    Yin WANG
    Xinzhi ZHANG
    Puyang CAI
    Wenzhong BAO
    Science China(Information Sciences), 2019, 62 (12) : 55 - 73