Prostate Cancer Detection and Analysis using Advanced Machine Learning

被引:0
|
作者
Alzboon, Mowafaq Salem [1 ]
Al-Batah, Mohammad Subhi [1 ]
机构
[1] Jadara Univ, Fac Sci & Informat Technol, Irbid, Jordan
关键词
Prostate cancer; machine learning; clinical data; radiological data; diagnosis; medical diagnosis; SELECTION; ALGORITHM;
D O I
10.14569/IJACSA.2023.0140843
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Prostate cancer is one of the leading causes of cancer-related deaths among men. Early detection of prostate cancer is essential in improving the survival rate of patients. This study aimed to develop a machine-learning model for detecting and diagnosing prostate cancer using clinical and radiological data. The dataset consists of 200 patients with prostate cancer and 200 healthy controls and extracted features from their clinical and radiological data. Then, the data trained and evaluated using several machines learning models, including machine, and neural network models, using 10-fold crossvalidation. Our results show that the random forest model achieved the highest accuracy of 0.92, with a sensitivity of 0.95 and a specificity of 0.89. The decision tree model achieved a nearly similar accuracy of 0.91, while the logistic regression, support vector machine, and neural network models achieved lower accuracies of 0.86, 0.87, and 0.88, respectively. Our findings suggest that machine learning models can effectively detect and diagnose prostate cancer using clinical and radiological data. The random forest model may be the most suitable model for this task.
引用
收藏
页码:388 / 396
页数:9
相关论文
共 50 条
  • [1] Prostate cancer prognosis using machine learning: A critical review of survival analysis methods
    Ahuja, Garvita
    Kaur, Ishleen
    Lamba, Puneet Singh
    Virmani, Deepali
    Jain, Achin
    Chakraborty, Somenath
    Mallik, Saurav
    PATHOLOGY RESEARCH AND PRACTICE, 2024, 264 : 155687
  • [2] Predicting intermediate-risk prostate cancer using machine learning
    Stojadinovic, Miroslav
    Stojadinovic, Milorad
    Jankovic, Slobodan
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2025, : 1737 - 1746
  • [3] Prostate Cancer Detection Using Deep Learning and Traditional Techniques
    Iqbal, Saqib
    Siddiqui, Ghazanfar Farooq
    Rehman, Amjad
    Hussain, Lal
    Saba, Tanzila
    Tariq, Usman
    Abbasi, Adeel Ahmed
    IEEE ACCESS, 2021, 9 : 27085 - 27100
  • [4] Advancing Traditional Prostate-specific Antigen Kinetics in the Detection of Prostate Cancer: A Machine Learning Model
    Perera, Marlon
    Smith, Lewis
    Thompson, Ian
    Breemer, Geoff
    Papa, Nathan
    Patel, Manish I.
    Swindle, Peter
    Smith, Elliot
    EUROPEAN UROLOGY FOCUS, 2022, 8 (05): : 1204 - 1210
  • [5] Comparative analysis of breast cancer detection using machine learning and biosensors
    Amethiya, Yash
    Pipariya, Prince
    Patel, Shlok
    Shah, Manan
    INTELLIGENT MEDICINE, 2022, 2 (02): : 69 - 81
  • [6] Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI
    Bertelli, Elena
    Mercatelli, Laura
    Marzi, Chiara
    Pachetti, Eva
    Baccini, Michela
    Barucci, Andrea
    Colantonio, Sara
    Gherardini, Luca
    Lattavo, Lorenzo
    Pascali, Maria Antonietta
    Agostini, Simone
    Miele, Vittorio
    FRONTIERS IN ONCOLOGY, 2022, 11
  • [7] Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies
    Hussain, Lal
    Ahmed, Adeel
    Saeed, Sharjil
    Rathore, Saima
    Awan, Imtiaz Ahmed
    Shah, Saeed Arif
    Majid, Abdul
    Idris, Adnan
    Awan, Anees Ahmed
    CANCER BIOMARKERS, 2018, 21 (02) : 393 - 413
  • [8] Prediction System for Prostate Cancer Recurrence Using Machine Learning
    Lee, Sun Jung
    Yu, Sung Hye
    Kim, Yejin
    Kim, Jae Kwon
    Hong, Jun Hyuk
    Kim, Choung-Soo
    Seo, Seong Il
    Byun, Seok-Soo
    Jeong, Chang Wook
    Lee, Ji Youl
    Choi, In Young
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [9] Prediction of Prostate Cancer using Ensemble of Machine Learning Techniques
    Oyewo, O. A.
    Boyinbode, O. K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (03) : 149 - 154
  • [10] Breast Cancer Detection and Prevention Using Machine Learning
    Khalid, Arslan
    Mehmood, Arif
    Alabrah, Amerah
    Alkhamees, Bader Fahad
    Amin, Farhan
    Alsalman, Hussain
    Choi, Gyu Sang
    DIAGNOSTICS, 2023, 13 (19)