Superior catalytic effect of titania - porous carbon composite for the storage of hydrogen in MgH2 and lithium in a Li ion battery

被引:5
|
作者
Pukazhselvan, D. [1 ,2 ,4 ]
Caha, Ihsan [3 ]
Loureiro, Francisco J. A. [1 ,2 ]
Shaula, Aliaksandr L. [1 ,2 ]
Mikhalev, Sergey M. [1 ,2 ]
Deepak, Francis Leonard [3 ]
Fagg, Duncan Paul [1 ,2 ]
机构
[1] Univ Aveiro, TEMA Ctr Mech Technol & Automat, Dept Mech Engn, Aveiro, Portugal
[2] LASI Intelligent Syst Associate Lab, Guimaraes, Portugal
[3] Int Iberian Nanotechnol Lab INL, Nanostruct Mat Grp, Ave Mestre Jose Veiga, P-4715330 Braga, Portugal
[4] Univ Aveiro, Ctr Mech Technol & Automat TEMA, Dept Mech Engn, Nanoengn Res Grp, P-3810193 Aveiro, Portugal
关键词
Hydrogen storage; Magnesium hydride; Nanocomposites; Additives; Rechargeable batteries; ACTIVATED CARBON; COMPLEX HYDRIDES; ANODE MATERIALS; BEHAVIOR; PERFORMANCE; NI; KINETICS; NANORODS; CORE; SIZE;
D O I
10.1016/j.ijhydene.2023.03.226
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel nanocomposite (0.2TiO(2) + AC) with two promising applications is demonstrated, (i) as an additive for promoting hydrogen storage in magnesium hydride, (ii) as an active electrode material for hosting lithium in Li ion batteries (surface area of activated carbon (AC): 491 m(2)/g, pore volume: 0.252 cc/g, size of TiO2 particles: 20-30 nm). Transmission electron microscopy study provides evidence that well dispersed TiO2 nanoparticles are enclosed by amorphous carbon nets. A thermogravimetry-differential scanning calorimetry (TG-DSC) study proves that the nanocomposite is thermally stable up to similar to 400 degrees C. Volumetric hydrogen storage tests and DSC studies further prove that a 3 wt% ofA novel nanocomposite (0.2TiO(2) + AC) with two promising applications is demonstrated, (i) as an additive for promoting hydrogen storage in magnesium hydride, (ii) as an active electrode material for hosting lithium in Li ion batteries (surface area of activated carbon (AC): 491 m(2)/g, pore volume: 0.252 cc/g, size of TiO2 particles: 20-30 nm). Transmission electron microscopy study provides evidence that well dispersed TiO2 nanoparticles are enclosed by amorphous carbon nets. A thermogravimetry-differential scanning calorimetry (TG-DSC) study proves that the nanocomposite is thermally stable up to similar to 400 degrees C. Volumetric hydrogen storage tests and DSC studies further prove that a 3 wt% of 0.2TiO(2) + AC nanocomposite as additive not only lowers the dehydrogenation temperature of MgH2 over 100 degrees C but also maintains the performance consistency. Moreover, as a working electrode for Li ion battery, 0.2TiO(2)+AC offers a reversible capacity of 400 mAh/g at the charge/discharge rate of 0.1C and consistent stability up to 43 cycles with the capacity retention of 160 mAh/g at 0.4C. Such cost effective-high performance materials with applications in two promising areas of energy storage are highly desired for progressing towards sustainable energy development. (c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页码:23917 / 23929
页数:13
相关论文
共 50 条
  • [1] Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes
    Lu, Xiong
    Zhang, Liuting
    Yu, Haijie
    Lu, Zhiyu
    He, Jiahuan
    Zheng, Jiaguang
    Wu, Fuying
    Chen, Lixin
    CHEMICAL ENGINEERING JOURNAL, 2021, 422
  • [2] Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2
    Yao, Pengyang
    Jiang, Ying
    Liu, Yang
    Wu, Chengzhang
    Chou, Kuo-Chih
    Lyu, Tao
    Li, Qian
    JOURNAL OF MAGNESIUM AND ALLOYS, 2020, 8 (02) : 461 - 471
  • [3] Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2
    Chen, Jie
    Xia, Guanglin
    Guo, Zaiping
    Huang, Zhenguo
    Liub, Huakun
    Yu, Xuebin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (31) : 15843 - 15848
  • [4] Porous MgH2/C composite with fast hydrogen storage kinetics
    Konarova, Muxina
    Tanksale, Akshat
    Beltramini, Jorge Norberto
    Lu, Gao Qing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (10) : 8370 - 8378
  • [5] Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite
    Ranjbar, A.
    Ismail, M.
    Guo, Z. P.
    Yu, X. B.
    Liu, H. K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) : 7821 - 7826
  • [6] Catalytic effect of CeCl3 on the hydrogen storage properties of MgH2
    Ismail, M.
    Mustafa, N. S.
    Juahir, N.
    Yap, F. A. Halim
    MATERIALS CHEMISTRY AND PHYSICS, 2016, 170 : 77 - 82
  • [7] Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2
    Yahya, M. S.
    Ismail, M.
    JOURNAL OF ENERGY CHEMISTRY, 2019, 28 : 46 - 53
  • [8] Synergistic catalytic effect of SrTiO3 and Ni on the hydrogen storage properties of MgH2
    Yahya, M. S.
    Ismail, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (12) : 6244 - 6255
  • [9] The catalytic effect of spherical NiMOF on the hydrogen storage performance of MgH2
    Zhang, Runyu
    Sui, Yudong
    Jiang, Yehua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 93 : 726 - 735
  • [10] Effect of LiH on hydrogen storage property of MgH2
    Leng, Haiyan
    Pan, Yanbiao
    Li, Qian
    Chou, Kuo-Chih
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (25) : 13622 - 13627