Activity Trend and Selectivity of Electrochemical Ammonia Synthesis in Reverse Artificial Nitrogen Cycle

被引:3
作者
Li, Lin [1 ,2 ,3 ]
Xiao, Jianping [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
ammonia synthesis; electrocatalysis; reverse artificial nitrogen cycle; nitrogen oxides; computational catalysis; AMBIENT CONDITIONS; LOW-TEMPERATURE; REDUCTION; N-2; CONVERSION; FIXATION; CATALYST; NO; ELECTROREDUCTION; DINITROGEN;
D O I
10.1002/cssc.202300593
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ammonia is important for modern agriculture and food production as it is a major source of fertilizer. Electrochemical ammonia synthesis (EAS) with sustainable energy generated electricity and decentralized reactors has been considered as environmentally friendly process. Several nitrogen sources have been considered and intensively studied in experiments and computations. Recently, it has been proposed and demonstrated that nitrogen oxides (NOx) electroreduction for selective ammonia production is feasible. Fundamental insights on experimental observation are necessary for more rational design of catalysts and reactors in the future. In this concept, we review the theoretical and computational insights of electrochemical nitrogen oxides reduction, particularly, the activity trend over diverse transition metal catalysts and products selectivity at varying potentials. Finally, we address the opportunities and challenges in the reverse artificial nitrogen cycle, as well as fundamental issues in electrochemical reaction modelling.
引用
收藏
页数:13
相关论文
共 71 条
[1]   Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III-VII transition metal mononitrides [J].
Abghoui, Younes ;
Skulason, Egill .
CATALYSIS TODAY, 2017, 286 :78-84
[2]   Computational Predictions of Catalytic Activity of Zincblende (110) Surfaces of Metal Nitrides for Electrochemical Ammonia Synthesis [J].
Abghoui, Younes ;
Skuilason, Egill .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (11) :6141-6151
[3]   Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments [J].
Abghoui, Younes ;
Garden, Anna L. ;
Howat, Jakob G. ;
Vegge, Tejs ;
Skulason, Egill .
ACS CATALYSIS, 2016, 6 (02) :635-646
[4]   Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design [J].
Abghoui, Younes ;
Garden, Anna L. ;
Hlynsson, Valtyr Freyr ;
Bjorgvinsdottir, Snaedis ;
Olafsdottir, Hrefna ;
Skulason, Egill .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) :4909-4918
[5]   Electrochemical oxidation of molecular nitrogen to nitric acid - towards a molecular level understanding of the challenges [J].
Anand, Megha ;
Abraham, Christina S. ;
Norskov, Jens K. .
CHEMICAL SCIENCE, 2021, 12 (18) :6442-6448
[6]   Control of NOx emissions from diesel engine by selective catalytic reduction (SCR) with urea [J].
Baik, JH ;
Yim, SD ;
Nam, IS ;
Mok, YS ;
Lee, JH ;
Cho, BK ;
Oh, SH .
TOPICS IN CATALYSIS, 2004, 30-1 (1-4) :37-41
[7]   Electrochemical Barriers Made Simple [J].
Chan, Karen ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (14) :2663-2668
[8]   Potential Dependence of Electrochemical Barriers from ab Initio Calculations [J].
Chant, Karen ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (09) :1686-1690
[9]   Modelling the ammonia adsorption-desorption process over an Fe-zeolite catalyst for SCR automotive applications [J].
Colombo, Massimo ;
Koltsakis, Grigorios ;
Nova, Isabella ;
Tronconi, Enrico .
CATALYSIS TODAY, 2012, 188 (01) :42-52
[10]   NITRIC-OXIDE REDUCTION AT NOBLE-METAL ELECTRODES - A VOLTAMMETRIC STUDY IN ACID-SOLUTION [J].
COLUCCI, JA ;
FORAL, MJ ;
LANGER, SH .
ELECTROCHIMICA ACTA, 1985, 30 (12) :1675-1685