Accurate prediction of heat conductivity of water by a neuroevolution potential

被引:30
作者
Xu, Ke [1 ]
Hao, Yongchao [1 ]
Liang, Ting [2 ]
Ying, Penghua [3 ]
Xu, Jianbin [2 ]
Wu, Jianyang [1 ,4 ]
Fan, Zheyong [5 ]
机构
[1] Xiamen Univ, Res Inst Biomimet & Soft Matter, Jiujiang Res Inst, Dept Phys, Fujian, Peoples R China
[2] Chinese Univ Hong Kong, Technol Res Ctr, Dept Elect Engn & Mat Sci, Hong Kong, Peoples R China
[3] Tel Aviv Univ, Sch Chem, Dept Phys Chem, Tel Aviv, Israel
[4] Norwegian Univ Sci & Technol NTNU, NTNU Nanomech Lab, Trondheim, Norway
[5] Bohai Univ, Coll Phys Sci & Technol, Jinzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS SIMULATION; THERMAL-CONDUCTIVITY; IRREVERSIBLE-PROCESSES; TRANSPORT-PROPERTIES; SILICON; SPC/E;
D O I
10.1063/5.0147039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose an approach that can accurately predict the heat conductivity of liquid water. On the one hand, we develop an accurate machine-learned potential based on the neuroevolution-potential approach that can achieve quantum-mechanical accuracy at the cost of empirical force fields. On the other hand, we combine the Green-Kubo method and the spectral decomposition method within the homogeneous nonequilibrium molecular dynamics framework to account for the quantum-statistical effects of high-frequency vibrations. Excellent agreement with experiments under both isobaric and isochoric conditions within a wide range of temperatures is achieved using our approach.
引用
收藏
页数:8
相关论文
共 54 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[3]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[4]   THERMODYNAMICS AND QUANTUM CORRECTIONS FROM MOLECULAR-DYNAMICS FOR LIQUID WATER [J].
BERENS, PH ;
MACKAY, DHJ ;
WHITE, GM ;
WILSON, KR .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (05) :2375-2389
[5]   Pressure control using stochastic cell rescaling [J].
Bernetti, Mattia ;
Bussi, Giovanni .
JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (11)
[6]   Equilibrium and nonequilibrium molecular-dynamics simulations of the central force model of water [J].
Bresme, F .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (16) :7564-7574
[7]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[8]   Ab initio thermodynamics of liquid and solid water [J].
Cheng, Bingqing ;
Engel, Edgar A. ;
Behler, Joerg ;
Dellago, Christoph ;
Ceriotti, Michele .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (04) :1110-1115
[9]   Anisotropic and high thermal conductivity in monolayer quasi-hexagonal fullerene: A comparative study against bulk phase fullerene [J].
Dong, Haikuan ;
Cao, Chenyang ;
Ying, Penghua ;
Fan, Zheyong ;
Qian, Ping ;
Su, Yanjing .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 206
[10]   GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations [J].
Fan, Zheyong ;
Wang, Yanzhou ;
Ying, Penghua ;
Song, Keke ;
Wang, Junjie ;
Wang, Yong ;
Zeng, Zezhu ;
Xu, Ke ;
Lindgren, Eric ;
Magnus Rahm, J. ;
J. Gabourie, Alexander ;
Liu, Jiahui ;
Dong, Haikuan ;
Wu, Jianyang ;
Chen, Yue ;
Zhong, Zheng ;
Sun, Jian ;
Erhart, Paul ;
Su, Yanjing ;
Ala-Nissila, Tapio .
JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (11)