Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication

被引:104
作者
Li, Wanlu [1 ]
Wang, Mian [1 ]
Ma, Huiling [1 ]
Chapa-Villarreal, Fabiola A. [1 ]
Lobo, Anderson Oliveira [2 ]
Zhang, Yu Shrike [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Engn Med, Cambridge, MA 02139 USA
[2] Fed Univ Piaui UFPI, Mat Sci & Engn Grad Program PPGCM, Interdisciplinary Lab Adv Mat LIMAV, BR-64049550 Teresina, PI, Brazil
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
EXTRACELLULAR-MATRIX; BIOMEDICAL APPLICATIONS; HYALURONIC-ACID; IN-VITRO; CELL; HYDROGELS; CONSTRUCTS; GELATIN; MICROENVIRONMENTS; BIOMATERIALS;
D O I
10.1016/j.isci.2023.106039
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional (3D) bioprinting has emerged as a class of promising techniques in biomedical research for a wide range of related applications. Specifically, stereolithography apparatus (SLA) and digital light processing (DLP)-based vat-polymerization techniques are highly effective methods of bioprinting, which can be used to produce high-resolution and architecturally sophisticated structures. Our review aims to provide an overview of SLA- and DLP-based 3D bio-printing strategies, starting from factors that affect these bioprinting processes. In addition, we summarize the advances in bioinks used in SLA and DLP, including naturally derived and synthetic bioinks. Finally, the biomedical applications of both SLA- and DLP-based bioprinting are discussed, primarily centered on regenerative medicine and tissue modeling engineering.
引用
收藏
页数:21
相关论文
共 118 条
[1]   Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design [J].
Ahangarpour, Marzieh ;
Kavianinia, Iman ;
Harris, Paul W. R. ;
Brimble, Margaret A. .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (02) :898-944
[2]  
Ahmadi F, 2015, RES PHARM SCI, V10, P1
[3]   Solvent-free synthesis and characterization of allyl chitosan derivatives [J].
Akopova, Tatiana A. ;
Demina, Tatiana S. ;
Cherkaev, Georgii V. ;
Khavpachev, Mukhamed A. ;
Bardakova, Kseniya N. ;
Grachev, Andrey V. ;
Vladimirov, Leonid V. ;
Zelenetskii, Alexander N. ;
Timashev, Petr S. .
RSC ADVANCES, 2019, 9 (36) :20968-20975
[4]   Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells [J].
Arcaute, Karina ;
Mann, Brenda K. ;
Wicker, Ryan B. .
ANNALS OF BIOMEDICAL ENGINEERING, 2006, 34 (09) :1429-1441
[5]   Applications of Alginate-Based Bioinks in 3D Bioprinting [J].
Axpe, Eneko ;
Oyen, Michelle L. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (12)
[6]   The extracellular matrix as a biologic scaffold material [J].
Badylak, Stephen F. .
BIOMATERIALS, 2007, 28 (25) :3587-3593
[7]   Photopolymerization in 3D Printing [J].
Bagheri, Ali ;
Jin, Jianyong .
ACS APPLIED POLYMER MATERIALS, 2019, 1 (04) :593-611
[8]  
Bartolo PJ, 2011, STEREOLITHOGRAPHY: MATERIALS, PROCESSES AND APPLICATIONS, P1
[9]   A fluid-supported 3D hydrogel bioprinting method [J].
Beh, Cyrus W. ;
Yew, Dionis S. ;
Chai, Ruth J. ;
Chin, Sau Yin ;
Seow, Yiqi ;
Hoon, Shawn S. .
BIOMATERIALS, 2021, 276
[10]   Influence of the degree of methacrylation on hyaluronic acid hydrogels properties [J].
Bencherif, Sidi A. ;
Srinivasan, Abiraman ;
Horkay, Ferenc ;
Hollinger, Jeffrey O. ;
Matyjaszewski, Krzysztof ;
Washburn, Newell R. .
BIOMATERIALS, 2008, 29 (12) :1739-1749