Thermal-Noise Cancellation for Optomechanically Induced Nonreciprocity in a Whispering-Gallery-Mode Microresonator

被引:10
作者
Tang, Zhi-Xiang [1 ,2 ]
Xu, Xun-Wei [1 ,2 ]
机构
[1] Hunan Normal Univ, Key Lab Matter Microstruct & Funct Hunan Prov, Dept Phys, Key Lab Low Dimens Quantum Struct & Quantum Contro, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
NON-RECIPROCITY; MICROWAVE; CONVERSION; RESONATOR; CIRCUIT;
D O I
10.1103/PhysRevApplied.19.034093
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic-free optomechanically induced nonreciprocity may stimulate a wide range of practical applications in quantum technologies. However, how to suppress the thermal-noise flow from the mechanical reservoir is still a difficulty encountered in achieving optomechanically nonreciprocal effects on a few- and even single-photon level. Here, we show how to realize thermal-noise cancellation by quantum interference for optomechanically induced nonreciprocity in a whispering-gallery-mode (WGM) microresonator. We find that both nonreciprocal transmission and amplification can be achieved in the WGM microresonator when coupled to two coupled mechanical resonators. More interestingly, the thermal noise can be suppressed when the two coupled mechanical resonators couple to a common thermal reservoir. The thermal-noise cancellation is induced by the destructive quantum interference between the two flow paths of the thermal noises from the common reservoir. The scheme of quantum-interference-induced thermalnoise cancellation can be applied in both sideband-resolved and unresolved regimes, even with strong backscattering taken into account. Our work provides an effective way to achieve nonreciprocal effects on a few- or single-photon level without precooling the mechanical mode to the ground state.
引用
收藏
页数:15
相关论文
共 96 条
[21]   Nonlinear optomechanics in the stationary regime [J].
Doolin, C. ;
Hauer, B. D. ;
Kim, P. H. ;
MacDonald, A. J. R. ;
Ramp, H. ;
Davis, J. P. .
PHYSICAL REVIEW A, 2014, 89 (05)
[22]   Observing polarization patterns in the collective motion of nanomechanical arrays [J].
Doster, Juliane ;
Shah, Tirth ;
Foesel, Thomas ;
Paulitschke, Philipp ;
Marquardt, Florian ;
Weig, Eva M. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[23]   Preserving coherence in quantum computation by pairing quantum bits [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1953-1956
[24]  
Fang KJ, 2017, NAT PHYS, V13, P465, DOI [10.1038/NPHYS4009, 10.1038/nphys4009]
[25]   Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state [J].
Forsch, Moritz ;
Stockill, Robert ;
Wallucks, Andreas ;
Marinkovic, Igor ;
Gaertner, Claus ;
Norte, Richard A. ;
van Otten, Frank ;
Fiore, Andrea ;
Srinivasan, Kartik ;
Groblacher, Simon .
NATURE PHYSICS, 2020, 16 (01) :69-74
[26]   INPUT AND OUTPUT IN DAMPED QUANTUM-SYSTEMS - QUANTUM STOCHASTIC DIFFERENTIAL-EQUATIONS AND THE MASTER EQUATION [J].
GARDINER, CW ;
COLLETT, MJ .
PHYSICAL REVIEW A, 1985, 31 (06) :3761-3774
[27]   Phonon Laser Action in a Tunable Two-Level System [J].
Grudinin, Ivan S. ;
Lee, Hansuek ;
Painter, O. ;
Vahala, Kerry J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (08)
[28]   Continuous mode cooling and phonon routers for phononic quantum networks [J].
Habraken, S. J. M. ;
Stannigel, K. ;
Lukin, M. D. ;
Zoller, P. ;
Rabl, P. .
NEW JOURNAL OF PHYSICS, 2012, 14
[29]   Optomechanically induced non-reciprocity in microring resonators [J].
Hafezi, Mohammad ;
Rabl, Peter .
OPTICS EXPRESS, 2012, 20 (07) :7672-7684
[30]   Coherent optical wavelength conversion via cavity optomechanics [J].
Hill, Jeff T. ;
Safavi-Naeini, Amir H. ;
Chan, Jasper ;
Painter, Oskar .
NATURE COMMUNICATIONS, 2012, 3