Thermal-Noise Cancellation for Optomechanically Induced Nonreciprocity in a Whispering-Gallery-Mode Microresonator

被引:10
作者
Tang, Zhi-Xiang [1 ,2 ]
Xu, Xun-Wei [1 ,2 ]
机构
[1] Hunan Normal Univ, Key Lab Matter Microstruct & Funct Hunan Prov, Dept Phys, Key Lab Low Dimens Quantum Struct & Quantum Contro, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
NON-RECIPROCITY; MICROWAVE; CONVERSION; RESONATOR; CIRCUIT;
D O I
10.1103/PhysRevApplied.19.034093
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic-free optomechanically induced nonreciprocity may stimulate a wide range of practical applications in quantum technologies. However, how to suppress the thermal-noise flow from the mechanical reservoir is still a difficulty encountered in achieving optomechanically nonreciprocal effects on a few- and even single-photon level. Here, we show how to realize thermal-noise cancellation by quantum interference for optomechanically induced nonreciprocity in a whispering-gallery-mode (WGM) microresonator. We find that both nonreciprocal transmission and amplification can be achieved in the WGM microresonator when coupled to two coupled mechanical resonators. More interestingly, the thermal noise can be suppressed when the two coupled mechanical resonators couple to a common thermal reservoir. The thermal-noise cancellation is induced by the destructive quantum interference between the two flow paths of the thermal noises from the common reservoir. The scheme of quantum-interference-induced thermalnoise cancellation can be applied in both sideband-resolved and unresolved regimes, even with strong backscattering taken into account. Our work provides an effective way to achieve nonreciprocal effects on a few- or single-photon level without precooling the mechanical mode to the ground state.
引用
收藏
页数:15
相关论文
共 96 条
[1]   Electromagnetically induced transparency in mechanical effects of light [J].
Agarwal, G. S. ;
Huang, Sumei .
PHYSICAL REVIEW A, 2010, 81 (04)
[2]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[3]   Near-field cavity optomechanics with nanomechanical oscillators [J].
Anetsberger, G. ;
Arcizet, O. ;
Unterreithmeier, Q. P. ;
Riviere, R. ;
Schliesser, A. ;
Weig, E. M. ;
Kotthaus, J. P. ;
Kippenberg, T. J. .
NATURE PHYSICS, 2009, 5 (12) :909-914
[4]   Near-field cavity optomechanical coupling in a compound semiconductor nanowire [J].
Asano, Motoki ;
Zhang, Guoqiang ;
Tawara, Takehiko ;
Yamaguchi, Hiroshi ;
Okamoto, Hajime .
COMMUNICATIONS PHYSICS, 2020, 3 (01)
[5]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[6]   Mesoscopic physics of nanomechanical systems [J].
Bachtold, Adrian ;
Moser, Joel ;
Dykman, M. I. .
REVIEWS OF MODERN PHYSICS, 2022, 94 (04)
[7]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[8]   Mechanical on-chip microwave circulator [J].
Barzanjeh, S. ;
Wulf, M. ;
Peruzzo, M. ;
Kalaee, M. ;
Dieterle, P. B. ;
Painter, O. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2017, 8
[9]   Optomechanics for quantum technologies [J].
Barzanjeh, Shabir ;
Xuereb, Andre ;
Groeblacher, Simon ;
Paternostro, Mauro ;
Regal, Cindy A. ;
Weig, Eva M. .
NATURE PHYSICS, 2022, 18 (01) :15-24
[10]   Manipulating the Flow of Thermal Noise in Quantum Devices [J].
Barzanjeh, Shabir ;
Aquilina, Matteo ;
Xuereb, Andre .
PHYSICAL REVIEW LETTERS, 2018, 120 (06)