On completeness of some pro-solvable Lie algebras

被引:0
|
作者
Abdurasulov, K. K. [1 ]
Omirov, B. A. [1 ,2 ,4 ]
Rakhimov, I. S. [3 ]
Solijanova, G. O. [2 ]
机构
[1] Uzbek Acad Sci, VI Romanovski Inst Math, Univ St 9, Tashkent 100174, Uzbekistan
[2] Natl Univ Uzbekistan, Univ St 4, Tashkent 100174, Uzbekistan
[3] Fac Comp & Math Sci, Shah Alam 40450, Selangor Darul, Malaysia
[4] New Uzbekistan Univ, Mustaqillik Ave 54, Tashkent 100007, Uzbekistan
关键词
Lie algebra; Potentially nilpotent Lie algebra; Pro-nilpotent (pro-solvable) Lie algebra; Cohomology group; COHOMOLOGY; EXTENSIONS;
D O I
10.2298/FIL2319395A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we describe the derivations of two N-graded infinite-dimensional Lie algebras n1 and n2 which are the positive parts of the affine Kac-Moody algebras A(1) 1 and A(2) 2 , respectively. Then we construct all pro-solvable Lie algebras whose potential nilpotent ideals are n1 and n2 and compute low-dimensional (co)homology groups of the pro-solvable Lie algebras constructed.
引用
收藏
页码:6395 / 6415
页数:21
相关论文
共 50 条
  • [1] On Solvable Lie Algebras of White Noise Operators
    Bock, Wolfgang
    Canama, Janeth
    Petalcorin, Gaudencio
    SYMMETRY-BASEL, 2022, 14 (11):
  • [2] Local derivations on Solvable Lie algebras
    Ayupov, Sh A.
    Khudoyberdiyev, A. Kh
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (07) : 1286 - 1301
  • [3] NILPOTENT DECOMPOSITION OF SOLVABLE LIE ALGEBRAS
    Qi, Liqun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (04) : 1041 - 1054
  • [4] Representations of filtered solvable Lie algebras
    Panov, A. N.
    SBORNIK MATHEMATICS, 2012, 203 (01) : 75 - 87
  • [5] On nilpotent and solvable Lie algebras of derivations
    Makedonskyi, Ie O.
    Petravchuk, A. P.
    JOURNAL OF ALGEBRA, 2014, 401 : 245 - 257
  • [6] A Study on the Centroid of a Class of Solvable Lie Algebras
    Yu, Demin
    Jiang, Chan
    Ma, Jiejing
    SYMMETRY-BASEL, 2023, 15 (07):
  • [7] Quivers and Three Dimensional Solvable Lie Algebras
    Pike, Jeffrey
    JOURNAL OF LIE THEORY, 2017, 27 (03) : 707 - 726
  • [8] Real solvable algebraically rigid Lie algebras
    Bermudez, J. M. Ancochea
    Campoamor-Stursberg, R.
    Vergnolle, L. Garcia
    Goze, M.
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (03): : 187 - 195
  • [9] The Betti Numbers for a Family of Solvable Lie Algebras
    Thanh Minh Duong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (02) : 735 - 746
  • [10] Solvable Leibniz algebras with quasi-filiform Lie algebras of maximum length nilradicals
    Muratova, Kh. A.
    Ladra, M.
    Omirov, B. A.
    Sattarov, A. M.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) : 3525 - 3542