Advances in artificial intelligence to predict cancer immunotherapy efficacy

被引:55
作者
Xie, Jindong [1 ]
Luo, Xiyuan [2 ]
Deng, Xinpei [1 ]
Tang, Yuhui [1 ]
Tian, Wenwen [1 ]
Cheng, Hui [2 ]
Zhang, Junsheng [1 ]
Zou, Yutian [1 ]
Guo, Zhixing [1 ]
Xie, Xiaoming [1 ]
机构
[1] Sun Yat Sen Univ Canc Ctr, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Sch Med, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial intelligence; immunotherapy; deep learning; multi-omics; genomics; CELL LUNG-CANCER; PD-1; BLOCKADE; IMMUNE CONTEXTURE; TUMORS; INHIBITORS; MELANOMA; BIOPSIES; NSCLC;
D O I
10.3389/fimmu.2022.1076883
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Tumor immunotherapy, particularly the use of immune checkpoint inhibitors, has yielded impressive clinical benefits. Therefore, it is critical to accurately screen individuals for immunotherapy sensitivity and forecast its efficacy. With the application of artificial intelligence (AI) in the medical field in recent years, an increasing number of studies have indicated that the efficacy of immunotherapy can be better anticipated with the help of AI technology to reach precision medicine. This article focuses on the current prediction models based on information from histopathological slides, imaging-omics, genomics, and proteomics, and reviews their research progress and applications. Furthermore, we also discuss the existing challenges encountered by AI in the field of immunotherapy, as well as the future directions that need to be improved, to provide a point of reference for the early implementation of AI-assisted diagnosis and treatment systems in the future.
引用
收藏
页数:9
相关论文
共 70 条
[51]   Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain [J].
Su, Xiaorui ;
Chen, Ni ;
Sun, Huaiqiang ;
Liu, Yanhui ;
Yang, Xibiao ;
Wang, Weina ;
Zhang, Simin ;
Tan, Qiaoyue ;
Su, Jingkai ;
Gong, Qiyong ;
Yue, Qiang .
NEURO-ONCOLOGY, 2020, 22 (03) :393-401
[52]   A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study [J].
Sun, Roger ;
Limkin, Elaine Johanna ;
Vakalopoulou, Maria ;
Dercle, Laurent ;
Champiat, Stephane ;
Han, Shan Rong ;
Verlingue, Loic ;
Brandao, David ;
Lancia, Andrea ;
Ammari, Samy ;
Hollebecque, Antoine ;
Scoazec, Jean-Yves ;
Marabelle, Aurelien ;
Massard, Christophe ;
Soria, Jean-Charles ;
Robert, Charlotte ;
Paragios, Nikos ;
Deutsch, Eric ;
Ferte, Charles .
LANCET ONCOLOGY, 2018, 19 (09) :1180-1191
[53]   Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers [J].
Trebeschi, S. ;
Drago, S. G. ;
Birkbak, N. J. ;
Kurilova, I ;
Calin, A. M. ;
Pizzi, A. Delli ;
Lalezari, F. ;
Lambregts, D. M. J. ;
Rohaan, M. W. ;
Parmar, C. ;
Rozeman, E. A. ;
Hartemink, K. J. ;
Swanton, C. ;
Haanen, J. B. A. G. ;
Blank, C. U. ;
Smit, E. F. ;
Beets-Tan, R. G. H. ;
Aerts, H. J. W. L. .
ANNALS OF ONCOLOGY, 2019, 30 (06) :998-1004
[54]   Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure [J].
Uribe-Herranz, Mireia ;
Klein-Gonzalez, Nela ;
Rodriguez-Lobato, Luis Gerardo ;
Juan, Manel ;
Fernandez de Larrea, Carlos .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (03) :1-27
[55]   Predictive Markers for Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer [J].
Ushio, Ryota ;
Murakami, Shuji ;
Saito, Haruhiro .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (07)
[56]   Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade [J].
Vaidya, Pranjal ;
Bera, Kaustav ;
Patil, Pradnya D. ;
Gupta, Amit ;
Jain, Prantesh ;
Alilou, Mehdi ;
Khorrami, Mohammadhadi ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (02)
[57]   Genomic correlates of response to CTLA-4 blockade in metastatic melanoma [J].
Van Allen, Eliezer M. ;
Miao, Diana ;
Schilling, Bastian ;
Shukla, Sachet A. ;
Blank, Christian ;
Zimmer, Lisa ;
Sucker, Antje ;
Hillen, Uwe ;
Foppen, Marnix H. Geukes ;
Goldinger, Simone M. ;
Utikal, Jochen ;
Hassel, Jessica C. ;
Weide, Benjamin ;
Kaehler, Katharina C. ;
Loquai, Carmen ;
Mohr, Peter ;
Gutzmer, Ralf ;
Dummer, Reinhard ;
Gabriel, Stacey ;
Wu, Catherine J. ;
Schadendorf, Dirk ;
Garraway, Levi A. .
SCIENCE, 2015, 350 (6257) :207-211
[58]   Deep learning in histopathology: the path to the clinic [J].
van der Laak, Jeroen ;
Litjens, Geert ;
Ciompi, Francesco .
NATURE MEDICINE, 2021, 27 (05) :775-784
[59]   Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC [J].
Wang, Chengdi ;
Ma, Jiechao ;
Shao, Jun ;
Zhang, Shu ;
Li, Jingwei ;
Yan, Junpeng ;
Zhao, Zhehao ;
Bai, Congchen ;
Yu, Yizhou ;
Li, Weimin .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[60]   Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases [J].
Weeber, Fleur ;
van de Wetering, Marc ;
Hoogstraat, Marlous ;
Dijkstra, Krijn K. ;
Krijgsman, Oscar ;
Kuilman, Thomas ;
Gadellaa-van Hooijdonk, Christa G. M. ;
van der Velden, Daphne L. ;
Peeper, Daniel S. ;
Cuppen, Edwin P. J. G. ;
Vries, Robert G. ;
Clevers, Hans ;
Voest, Emile E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (43) :13308-13311