Bayesian optimization of electrochemical devices for electrons-to-molecules conversions: the case of pulsed CO2 electroreduction

被引:7
作者
Frey, Daniel [1 ]
Neyerlin, K. C. [2 ]
Modestino, Miguel A. [1 ]
机构
[1] NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, 6 Metrotech Ctr, Brooklyn, NY 10012 USA
[2] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
关键词
TECHNOECONOMIC ANALYSIS; REDUCTION; COPPER; DESIGN; OXIDATION; ETHYLENE; STABILITY; DISCOVERY; CELL;
D O I
10.1039/d2re00285j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrons-to-molecules conversions have emerged as a route to integrate renewable electricity into chemical production processes and ultimately contribute to the decarbonization of chemistry. The practical implementation of these conversions will depend on the optimization of many electrolyzer design and operating parameters. Bayesian optimization (BO) has been shown to be a robust and efficient method for these types of optimization problems where data may be scarce. Here, we demonstrate the use of BO to improve a membrane electrode assembly (MEA) CO2 electrolyzer, targeting the production of CO through dynamic operation. In a system with intentionally unoptimized components, we first demonstrate the effectiveness of dynamic voltage pulses on CO faradaic efficiency (FE), then utilize BO for 3D and 4D optimization of pulse times and current densities to increase CO partial current density by >64% from the initially tested conditions. The methodology showcased here lays the groundwork for the optimization of other complex electrons-to-molecules conversions that will be required for the electrification of chemical manufacturing.
引用
收藏
页码:323 / 331
页数:9
相关论文
共 86 条
[61]   Synthesis and Characterization of Perfluorinated Anion Exchange Membranes [J].
Park, A. M. ;
Owczarczyk, Z. R. ;
Garner, L. E. ;
Yang-Neyerlin, A. C. ;
Long, H. ;
Antunes, C. M. ;
Sturgeon, M. R. ;
Lindell, M. J. ;
Hamrock, S. J. ;
Yandrasits, M. A. ;
Pivovar, B. S. .
POLYMER ELECTROLYTE FUEL CELLS 17 (PEFC 17), 2017, 80 (08) :957-966
[62]   Multi-objective Bayesian optimization of chemical reactor design using computational fluid dynamics [J].
Park, Seongeon ;
Na, Jonggeol ;
Kim, Minjun ;
Lee, Jong Min .
COMPUTERS & CHEMICAL ENGINEERING, 2018, 119 :25-37
[63]   Adaptive Optimization of Chemical Reactions with Minimal Experimental Information [J].
Reker, Daniel ;
Hoyt, Emily A. ;
Bernardes, Goncalo J. L. ;
Rodrigues, Tiago .
CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (11)
[64]   A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture [J].
Rumayor, M. ;
Dominguez-Ramos, A. ;
Perez, P. ;
Irabien, A. .
JOURNAL OF CO2 UTILIZATION, 2019, 34 :490-499
[65]   Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane [J].
Salvatore, Danielle A. ;
Weekes, David M. ;
He, Jingfu ;
Dettelbach, Kevan E. ;
Li, Yuguang C. ;
Mallouk, Thomas E. ;
Berlinguette, Curtis P. .
ACS ENERGY LETTERS, 2018, 3 (01) :149-154
[66]   Thermodynamic Discrimination between Energy Sources for Chemical Reactions [J].
Schiffer, Zachary J. ;
Limaye, Aditya M. ;
Manthiram, Karthish .
JOULE, 2021, 5 (01) :135-148
[67]   Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives [J].
Schweidtmann, Artur M. ;
Clayton, Adam D. ;
Holmes, Nicholas ;
Bradford, Eric ;
Bourne, Richard A. ;
Lapkin, Alexei A. .
CHEMICAL ENGINEERING JOURNAL, 2018, 352 :277-282
[68]   Bayesian reaction optimization as a tool for chemical synthesis [J].
Shields, Benjamin J. ;
Stevens, Jason ;
Li, Jun ;
Parasram, Marvin ;
Damani, Farhan ;
Alvarado, Jesus I. Martinez ;
Janey, Jacob M. ;
Adams, Ryan P. ;
Doyle, Abigail G. .
NATURE, 2021, 590 (7844) :89-+
[69]   PULSED ELECTROREDUCTION OF CO2 ON COPPER ELECTRODES [J].
SHIRATSUCHI, R ;
AIKOH, Y ;
NOGAMI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (12) :3479-3482
[70]   Pulsed electroreduction of CO2 on silver electrodes [J].
Shiratsuchi, R ;
Nagami, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (02) :582-586