Bayesian optimization of electrochemical devices for electrons-to-molecules conversions: the case of pulsed CO2 electroreduction

被引:7
作者
Frey, Daniel [1 ]
Neyerlin, K. C. [2 ]
Modestino, Miguel A. [1 ]
机构
[1] NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, 6 Metrotech Ctr, Brooklyn, NY 10012 USA
[2] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
关键词
TECHNOECONOMIC ANALYSIS; REDUCTION; COPPER; DESIGN; OXIDATION; ETHYLENE; STABILITY; DISCOVERY; CELL;
D O I
10.1039/d2re00285j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrons-to-molecules conversions have emerged as a route to integrate renewable electricity into chemical production processes and ultimately contribute to the decarbonization of chemistry. The practical implementation of these conversions will depend on the optimization of many electrolyzer design and operating parameters. Bayesian optimization (BO) has been shown to be a robust and efficient method for these types of optimization problems where data may be scarce. Here, we demonstrate the use of BO to improve a membrane electrode assembly (MEA) CO2 electrolyzer, targeting the production of CO through dynamic operation. In a system with intentionally unoptimized components, we first demonstrate the effectiveness of dynamic voltage pulses on CO faradaic efficiency (FE), then utilize BO for 3D and 4D optimization of pulse times and current densities to increase CO partial current density by >64% from the initially tested conditions. The methodology showcased here lays the groundwork for the optimization of other complex electrons-to-molecules conversions that will be required for the electrification of chemical manufacturing.
引用
收藏
页码:323 / 331
页数:9
相关论文
共 86 条
[1]  
Abdelrahman H, 2016, 2016 EUROPEAN CONTROL CONFERENCE (ECC), P2078, DOI 10.1109/ECC.2016.7810598
[2]  
[Anonymous], 2018, ARXIV180702811
[3]   The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction [J].
Aran-Ais, Rosa M. ;
Scholten, Fabian ;
Kunze, Sebastian ;
Rizo, Ruben ;
Roldan Cuenya, Beatriz .
NATURE ENERGY, 2020, 5 (04) :317-325
[4]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[5]   Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning [J].
Balachandran, Prasanna V. ;
Kowalski, Benjamin ;
Sehirlioglu, Alp ;
Lookman, Turab .
NATURE COMMUNICATIONS, 2018, 9
[6]   Electro-organic Syntheses for Green Chemical Manufacturing [J].
Biddinger, Elizabeth J. ;
Modestino, Miguel A. .
ELECTROCHEMICAL SOCIETY INTERFACE, 2020, 29 (03) :45-49
[7]   Organic Electrosynthesis for Sustainable Chemical Manufacturing [J].
Blanco, Daniela E. ;
Modestino, Miguel A. .
TRENDS IN CHEMISTRY, 2019, 1 (01) :8-10
[8]   Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence [J].
Blanco, Daniela E. ;
Lee, Bryan ;
Modestino, Miguel A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (36) :17683-17689
[9]  
Brueske S., 2015, Bandwidth study on energy use and potential energy savings opportunities in U.S. petroleum refining
[10]   A mobile robotic chemist [J].
Burger, Benjamin ;
Maffettone, Phillip M. ;
Gusev, Vladimir V. ;
Aitchison, Catherine M. ;
Bai, Yang ;
Wang, Xiaoyan ;
Li, Xiaobo ;
Alston, Ben M. ;
Li, Buyi ;
Clowes, Rob ;
Rankin, Nicola ;
Harris, Brandon ;
Sprick, Reiner Sebastian ;
Cooper, Andrew I. .
NATURE, 2020, 583 (7815) :237-+