Bregman proximal point type algorithms for quasiconvex minimization

被引:4
作者
Lara, F. [1 ]
Marcavillaca, R. T. [1 ]
机构
[1] Univ Tarapaca, Fac Ciencias, Dept Matemat, Arica, Chile
关键词
Proximal point algorithms; Bregman distances; nonconvex optimization; generalized convexity; quasiconvexity; STRONGLY-CONVEX; 1ST-ORDER METHODS; DISTANCES; EXTENSION; SETS;
D O I
10.1080/02331934.2022.2112580
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We discuss a Bregman proximal point type algorithm for dealing with quasiconvex minimization. In particular, we prove that the Bregman proximal point type algorithm converges to a minimal point for the minimization problem of a certain class of quasiconvex functions without neither differentiability nor Lipschitz continuity assumptions, this class of nonconvex functions is known as strongly quasiconvex functions and, as a consequence, we revisited the general case of quasiconvex functions.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 43 条
  • [1] Arjevani Y, 2016, J MACH LEARN RES, V17
  • [2] ROBUST ACCELERATED GRADIENT METHODS FOR SMOOTH STRONGLY CONVEX FUNCTIONS
    Aybat, Necdet Serhat
    Fallah, Alireza
    Gurbuzbalaban, Mert
    Ozdaglar, Asuman
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 717 - 751
  • [3] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [4] Bregman monotone optimization algorithms
    Bauschke, HH
    Borwein, JM
    Combettes, PL
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) : 596 - 636
  • [5] FIRST ORDER METHODS BEYOND CONVEXITY AND LIPSCHITZ GRADIENT CONTINUITY WITH APPLICATIONS TO QUADRATIC INVERSE PROBLEMS
    Bolte, Jerome
    Sabach, Shoham
    Teboulle, Marc
    Vaisbourd, Yakov
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) : 2131 - 2151
  • [6] Proximal methods in vector optimization
    Bonnel, H
    Iusem, AN
    Svaiter, BF
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) : 953 - 970
  • [7] Bregman L. M., 1967, USSR COMP MATH MATH, V7, P200, DOI [DOI 10.1016/0041-5553(67)90040-7, 10.1016/0041-5553(67)90040-7]
  • [8] Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints
    Brito, Arnaldo S.
    da Cruz Neto, J. X.
    Lopes, Jurandir O.
    Roberto Oliveira, P.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) : 217 - 234
  • [9] A generalized proximal point algorithm for the variational inequality problem in a Hilbert space
    Burachik, RS
    Iusem, AN
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (01) : 197 - 216
  • [10] Cambini A., 2009, LECT NOTES EC MATH S, V616