Strong convergence of an inertial Halpern type algorithm in Banach spaces

被引:0
作者
Ranjbar, Sajad [1 ]
机构
[1] Higher Educ Ctr Eghlid, Dept Math, Eghlid, Iran
关键词
Fixed point; Strong convergence; Iterative methods; Halpern iteration; Accretive operator; MAXIMAL MONOTONE-OPERATORS; COMMON FIXED-POINTS; ACCRETIVE-OPERATORS; NONEXPANSIVE RETRACTS; ASYMPTOTIC-BEHAVIOR; THEOREMS; SEMIGROUPS; MAPPINGS; ZEROS;
D O I
10.1007/s12215-022-00748-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we obtain the strong convergence of the new modified Halpern iteration process x(n+1) = alpha(n)u+(1-alpha(n))TnP(x(n) + theta(n)(x(n) - x(n-1))), n = 1,2,3, ... , to a common fixed point of {T-n}, where {T-n}(n=1)(infinity) is a family of nonexpansive mappings on the closed and convex subset C of a Banach space X, P : X -> C is a nonexpansive retraction, {alpha(n)} subset of [0, 1] and {theta(n)} subset of R+. Some applications of this result are also presented.
引用
收藏
页码:1561 / 1570
页数:10
相关论文
共 24 条
[1]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[2]   Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space [J].
Aoyama, Koji ;
Kimura, Yasunori ;
Takahashi, Wataru ;
Toyoda, Masashi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) :2350-2360
[3]  
Baillon J.P., 1978, QUELQUES ASPECTS THE
[5]   NONEXPANSIVE PROJECTIONS ON SUBSETS OF BANACH SPACES [J].
BRUCK, RE .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 47 (02) :341-355
[6]   NONEXPANSIVE RETRACTS OF BANACH SPACES [J].
BRUCK, RE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (02) :384-&
[7]   CHARACTERIZATION OF HILBERT-SPACE [J].
BRUCK, RE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 43 (01) :173-175
[8]   ZUM PRINZIP DER KONTRAKTIVEN ABBILDUNG [J].
GOHDE, D .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (3-4) :251-&
[10]   COERCIVITY CONDITIONS, ZEROS OF MAXIMAL MONOTONE OPERATORS, AND MONOTONE EQUILIBRIUM PROBLEMS [J].
Khatibzadeh, Hadi ;
Rezaei, Mahnaz ;
Ranjbar, Sajad .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (04) :519-530