PMD Core Ontology: Achieving semantic interoperability in materials science

被引:30
作者
Bayerlein, Bernd [1 ]
Schilling, Markus [1 ]
Birkholz, Henk [2 ]
Jung, Matthias [3 ]
Waitelonis, Jorg [4 ]
Maedler, Lutz [2 ,5 ]
Sack, Harald [4 ]
机构
[1] Bundesanstalt Materialforschung & prufung BAM, Unter Eichen 87, D-12205 Berlin, Germany
[2] Leibniz Inst Mat Engn IWT, Badgasteiner Str 3, D-28359 Bremen, Germany
[3] Fraunhofer Inst Mech Mat IWM, Wohlerstr 11, D-79108 Freiburg Im Breisgau, Germany
[4] FIZ Karlsruhe Leibniz Inst Informat Infrastructure, Hermann-von-Helmholtz-Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[5] Univ Bremen, Badgasteiner Str 3, D-28359 Bremen, Germany
关键词
Ontology; Materials science and engineering; Knowledge representation; Reproducibility; Semantic interoperability; Semantic data integration;
D O I
10.1016/j.matdes.2023.112603
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Knowledge representation in the Materials Science and Engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant (consistent) and variant (context-specific) knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this paper, an approach how to maintain a comprehensive MSE-centric terminology composing a mid-level ontology-the Platform MaterialDigital Core Ontology (PMDco)-via MSE community-based curation procedures is presented. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics. Additionally, it demonstrates how the PMDco lowers development and integration thresholds. Moreover, the research highlights how to fuel it with real-world data sources ranging from manually conducted experiments and simulations with continuously automated industrial applications.
引用
收藏
页数:12
相关论文
共 49 条
[1]  
Alam M., 2020, Towards digitizing physical entities in materials science
[2]  
[Anonymous], 2022, MaterialDigital: Digitalisierung der Materialforschung
[3]  
[Anonymous], 2017, P PROV ONT SUPP AL O
[4]  
Arp R, 2015, BUILDING ONTOLOGIES WITH BASIC FORMAL ONTOLOGY, P1, DOI 10.7551/mitpress/9780262527811.001.0001
[5]  
Auer S, 2022, Semantic Integration and Interoperability
[6]  
Baker M, 2016, NATURE, V533, P452, DOI 10.1038/533452a
[7]   A Perspective on Digital Knowledge Representation in Materials Science and Engineering [J].
Bayerlein, Bernd ;
Hanke, Thomas ;
Muth, Thilo ;
Riedel, Jens ;
Schilling, Markus ;
Schweizer, Christoph ;
Skrotzki, Birgit ;
Todor, Alexandru ;
Torres, Benjami Moreno ;
Unger, Jorg F. ;
Voelker, Christoph ;
Olbricht, Jurgen .
ADVANCED ENGINEERING MATERIALS, 2022, 24 (06)
[8]   The Semantic Web - A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities [J].
Berners-Lee, T ;
Hendler, J ;
Lassila, O .
SCIENTIFIC AMERICAN, 2001, 284 (05) :34-+
[9]  
BMBF V.T.G., 2022, MaterialDigital - Digitalisierung der Materialforschung
[10]  
Boettiger Carl, 2020, Zenodo