Attention-guided deep neural network with a multichannel architecture for lung nodule classification

被引:6
作者
Zheng, Rong [1 ]
Wen, Hongqiao [2 ]
Zhu, Feng [3 ,4 ]
Lan, Weishun [5 ]
机构
[1] Huazhong Univ Sci & Technol, Maternal & Child Hlth Hosp Hubei Prov, Tongji Med Coll, Dept Gynecol, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Informat Engn, Wuhan 430070, Peoples R China
[3] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Cardiol, Wuhan, Peoples R China
[4] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Clin Ctr Human Gene Res, Wuhan, Peoples R China
[5] Huazhong Univ Sci & Technol, Maternal & Child Hlth Hosp Hubei Prov, Tongji Med Coll, Dept Med Imaging, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Attention mechanism; Deep learning; lung nodule classification; COMPUTER-AIDED DIAGNOSIS; FALSE-POSITIVE REDUCTION; PULMONARY NODULES; TEXTURE; INFORMATION; SHAPE;
D O I
10.1016/j.heliyon.2023.e23508
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Detecting and accurately identifying malignant lung nodules in chest CT scans in a timely manner is crucial for effective lung cancer treatment. This study introduces a deep learning model featuring a multi-channel attention mechanism, specifically designed for the precise diagnosis of malignant lung nodules. To start, we standardized the voxel size of CT images and generated three RGB images of varying scales for each lung nodule, viewed from three different angles. Subsequently, we applied three attention submodels to extract class-specific characteristics from these RGB images. Finally, the nodule features were consolidated in the model's final layer to make the ultimate predictions. Through the utilization of an attention mechanism, we could dynamically pinpoint the exact location of lung nodules in the images without the need for prior segmentation. This proposed approach enhances the accuracy and efficiency of lung nodule classification. We evaluated and tested our model using a dataset of 1018 CT scans sourced from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The experimental results demonstrate that our model achieved a lung nodule classification accuracy of 90.11 %, with an area under the receiver operator curve (AUC) score of 95.66 %. Impressively, our method achieved this high level of performance while utilizing only 29.09 % of the time needed by the mainstream model.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Resolving human object recognition in space and time [J].
Cichy, Radoslaw Martin ;
Pantazis, Dimitrios ;
Oliva, Aude .
NATURE NEUROSCIENCE, 2014, 17 (03) :455-462
[4]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[5]   A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images [J].
Dhara, Ashis Kumar ;
Mukhopadhyay, Sudipta ;
Dutta, Anirvan ;
Garg, Mandeep ;
Khandelwal, Niranjan .
JOURNAL OF DIGITAL IMAGING, 2016, 29 (04) :466-475
[6]   Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection [J].
Dou, Qi ;
Chen, Hao ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (07) :1558-1567
[7]   Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks [J].
Dou, Qi ;
Chen, Hao ;
Yu, Lequan ;
Zhao, Lei ;
Qin, Jing ;
Wang, Defeng ;
Mok, Vincent C. T. ;
Shi, Lin ;
Heng, Pheng-Ann .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1182-1195
[8]   Pulmonary nodule detection on lung parenchyma images using hyber-deep algorithm [J].
Fang, Da ;
Jiang, Hao ;
Chen, Wenyang ;
Qin, Zhibao ;
Shi, Junsheng ;
Zhang, Jun .
HELIYON, 2023, 9 (07)
[9]   Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition [J].
Fu, Jianlong ;
Zheng, Heliang ;
Mei, Tao .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4476-4484
[10]   An attention-enhanced cross-task network to analyse lung nodule attributes in CT images [J].
Fu, Xiaohang ;
Bi, Lei ;
Kumar, Ashnil ;
Fulham, Michael ;
Kim, Jinman .
PATTERN RECOGNITION, 2022, 126