True bridging liquid-solid ratio (TBSR): Redefining a critical process parameter in spherical agglomeration

被引:6
作者
Tew, Jonathan D. [1 ]
Pitt, Kate [1 ]
Smith, Rachel [1 ]
Litster, James D. [1 ]
机构
[1] Univ Sheffield, Dept Chem & Biol Engn, Mappin St, Sheffield S1 3JD, England
基金
英国工程与自然科学研究理事会;
关键词
Spherical agglomeration; Immersion nucleation; Bridging liquid -solid ratio; TBSR; ACID FINE PARTICLES; INTERFACIAL-TENSIONS; CRYSTALLIZATION; CRYSTALS; SIZE; SUSPENSION; GRANULATION; KINETICS; DESIGN; BINARY;
D O I
10.1016/j.powtec.2023.119010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Spherical agglomeration of crystals via addition of an immiscible bridging liquid can improve active pharmaceutical ingredient handling and tabletability. Bridging liquid amount is quantified by the bridging liquid-solid ratio (BSR). However, the optimal range of the BSR for agglomerates to form is highly dependent on the bridging liquid/solvent/antisolvent system. Here, a new definition is introduced to account for bridging liquid-solvent miscibility; true bridging liquid-solid ratio (TBSR). A method for calculating TBSR from the system ternary phase diagram is demonstrated for five different common binder liquids with acetone/water as the solvent/ antisolvent system. Results show the value of BSR varies dramatically for a given TBSR as a function of both the system and the solids loading. Experimental salicylic acid agglomeration studies confirm optimal BSR varied widely with binder liquid and solids loading between 0.2 and 2, but the optimum TBSR for all experiments was in a narrow range between 0.05 and 0.15. Thus, TBSR is a robust dimensionless parameter for design and scale up of spherical agglomeration processes.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Spherical agglomeration during crystallization of an active pharmaceutical ingredient [J].
Amaro-González, D ;
Biscans, B .
POWDER TECHNOLOGY, 2002, 128 (2-3) :188-194
[2]   INTERFACIAL-TENSIONS IN BINARY AND TERNARY LIQUID LIQUID-SYSTEMS [J].
BACKES, HM ;
JING, JM ;
BENDER, E ;
MAURER, G .
CHEMICAL ENGINEERING SCIENCE, 1990, 45 (01) :275-286
[3]   Modelling of agglomeration in suspension: Application to salicylic acid microparticles [J].
Blandin, AF ;
Mangin, D ;
Subero-Couroyer, C ;
Rivoire, A ;
Klein, JP ;
Bossoutrot, JM .
POWDER TECHNOLOGY, 2005, 156 (01) :19-33
[4]   Agglomeration in suspension of salicylic acid fine particles: influence of some process parameters on kinetics and agglomerate final size [J].
Blandin, AF ;
Mangin, D ;
Rivoire, A ;
Klein, JP ;
Bossoutrot, JM .
POWDER TECHNOLOGY, 2003, 130 (1-3) :316-323
[5]   KINETICS OF CONTINUOUS AGGLOMERATION IN SUSPENSION [J].
BOS, AS ;
ZUIDERWEG, FJ .
POWDER TECHNOLOGY, 1985, 44 (01) :43-51
[6]  
Di Martino P, 1999, DRUG DEV IND PHARM, V25, P1073
[7]   THE BOUNDARY TENSION AT WATER ORGANIC LIQUID INTERFACES [J].
DONAHUE, DJ ;
BARTELL, FE .
JOURNAL OF PHYSICAL CHEMISTRY, 1952, 56 (04) :480-489
[8]   GROUP-CONTRIBUTION ESTIMATION OF ACTIVITY-COEFFICIENTS IN NONIDEAL LIQUID-MIXTURES [J].
FREDENSLUND, A ;
JONES, RL ;
PRAUSNITZ, JM .
AICHE JOURNAL, 1975, 21 (06) :1086-1099
[9]   Estimation of water-organic interfacial tensions. A linear free energy relationship analysis of interfacial adhesion [J].
Freitas, AA ;
Quina, FH ;
Carroll, FA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (38) :7488-7493
[10]  
FU JF, 1986, CHEM ENG SCI, V41, P2673, DOI 10.1016/0009-2509(86)80055-0