Gauss-Mapping Black Widow Optimization With Deep Extreme Learning Machine for Android Malware Classification Model

被引:11
作者
Aldehim, Ghadah [1 ]
Arasi, Munya A. [2 ]
Khalid, Majdi [3 ]
Aljameel, Sumayh S. [4 ]
Marzouk, Radwa [1 ]
Mohsen, Heba [5 ]
Yaseen, Ishfaq [6 ]
Ibrahim, Sara Saadeldeen [6 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11671, Saudi Arabia
[2] King Khalid Univ, Coll Sci & Arts Rijal Almaa, Dept Comp Sci, Abha 61421, Saudi Arabia
[3] Umm Al Qura Univ, Coll Comp & Informat Syst, Dept Comp Sci, Mecca 21955, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, SAUDI ARAMCO Cybersecur Chair, Dept Comp Sci, Dammam 31441, Saudi Arabia
[5] Future Univ Egypt, Fac Comp & Informat Technol, Dept Comp Sci, New Cairo 11835, Egypt
[6] Prince Sattam bin Abdulaziz Univ, Dept Comp & Self Dev, Deanship Preparatory Year, Al Kharj 16278, Saudi Arabia
关键词
Operating systems; Ransomware; Optimization; Feature extraction; Classification algorithms; Static analysis; Heuristic algorithms; Android malware; machine learning; cybersecurity; feature selection; parameter tuning; SYSTEM;
D O I
10.1109/ACCESS.2023.3285289
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, the malware on the Android platform is found to be increasing. With the prevalent use of code obfuscation technology, the precision of antivirus software and classical detection techniques is low. Classical detection techniques of signature matching and manual analysis have exposed issues like low accuracy and slow detection speed. Several authors have overcome the issue of Android malware detection utilizing machine learning (ML) techniques and had more research outcomes. With the growth of deep learning (DL), many researchers started to use DL methods for detecting Android malware. This article introduces a Gauss-Mapping Black Widow Optimization with Deep Learning Enabled Android Malware Classification (GBWODL-AMC) model. The major intention of the GBWODL-AMC technique lies in the automated classification of Android malware. To accomplish this, the GBWODL-AMC technique involves the design of GBWO based feature selection approach to enhance the classification performance. For Android malware classification purposes, the GBWODL-AMC technique employs a deep extreme learning machine (DELM) model and its parameter are optimally selected by the ant lion optimization (ALO) algorithm. The simulation analysis of the GBWODL-AMC technique is tested on CICAndMal2017 dataset. Extensive experimental results signify the better performance of the GBWODL-AMC technique over other malware detectors with maximum accuracy of 98.95%.
引用
收藏
页码:87062 / 87070
页数:9
相关论文
共 27 条
[1]   Mitigating adversarial evasion attacks of ransomware using ensemble learning [J].
Ahmed, Usman ;
Lin, Jerry Chun-Wei ;
Srivastava, Gautam .
COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
[2]   A Crypto-Steganography Approach for Hiding Ransomware within HEVC Streams in Android IoT Devices [J].
Almomani, Iman ;
Alkhayer, Aala ;
El-Shafai, Walid .
SENSORS, 2022, 22 (06)
[3]  
Alsoghyer Samah, 2020, 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), P94, DOI 10.1109/CDMA47397.2020.00022
[4]   An Intelligent Behavior-Based Ransomware Detection System For Android Platform [J].
Alzahrani, Abdulrahman ;
Alshahrani, Hani ;
Alshehri, Ali ;
Fu, Huirong .
2019 FIRST IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS (TPS-ISA 2019), 2019, :28-35
[5]  
Bagui S, 2021, Int J Comput Sci Inf Secur, V19, P29, DOI DOI 10.5281/ZENODO.4533395
[6]   Towards a fast off-line static malware analysis framework [J].
Chikapa, Macdonald ;
Namanya, Anitta Patience .
2018 IEEE 6TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (W-FICLOUD 2018), 2018, :182-187
[7]   Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study [J].
Cortes-Caicedo, Brandon ;
Grisales-Norena, Luis Fernando ;
Danilo Montoya, Oscar ;
Rodriguez-Cabal, Miguel Angel ;
Alveiro Rosero, Javier .
SUSTAINABILITY, 2022, 14 (23)
[8]   A Hybrid Analysis-Based Approach to Android Malware Family Classification [J].
Ding, Chao ;
Luktarhan, Nurbol ;
Lu, Bei ;
Zhang, Wenhui .
ENTROPY, 2021, 23 (08)
[9]   Fuzzy pattern tree for edge malware detection and categorization in IoT [J].
Dovom, Ensieh Modiri ;
Azmoodeh, Amin ;
Dehghantanha, Ali ;
Newton, David Ellis ;
Parizi, Reza M. ;
Karimipour, Hadis .
JOURNAL OF SYSTEMS ARCHITECTURE, 2019, 97 :1-7
[10]   Detecting IoT Malware by Markov Chain Behavioral Models [J].
Ficco, Massimo .
2019 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E), 2019, :229-234