Laser powder bed fusion processing of a precipitation strengthenable FCC based high entropy alloy

被引:4
作者
Chesetti, Advika [1 ,2 ,3 ]
Banerjee, Sucharita [2 ,3 ,4 ]
Dasari, Sriswaroop [1 ]
Varahabhatla, S. M. [1 ,2 ,3 ]
Sharma, Abhishek [1 ]
Mantri, Srinivasa Aditya [1 ,2 ,3 ]
Nartu, Mohan Sai Kiran Kumar Yadav [1 ,2 ,3 ]
Dahotre, Narendra [1 ,2 ,3 ]
Banerjee, Rajarshi [1 ,2 ,3 ]
机构
[1] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76207 USA
[2] Univ North Texas, Ctr Agile & Adapt Addit Mfg, Denton, TX 76207 USA
[3] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76207 USA
[4] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
来源
ADDITIVE MANUFACTURING LETTERS | 2023年 / 6卷
关键词
Additive manufacturing; Laser powder bed fusion; High entropy alloy; Microstructural characterization; Mechanical properties; MICROSTRUCTURE; DUCTILITY;
D O I
10.1016/j.addlet.2023.100140
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
While additive manufacturing (AM) of single-phase solid solution based high entropy alloys (HEAs) has attracted a lot of recent attention, such processing of precipitation strengthenable multi-phase HEAs has not been actively investigated. This becomes important since AM processing results in each layer experiencing rapid solidification followed by multiple heating-cooling cycles, mimicking in situ heat treatments, potentially influencing the phase evolution. A precipitation strengthenable face centered cubic (FCC) based HEA, Al0.3Ti0.2Co0.7CrFeNi1.7, was printed using laser powder bed fusion (LPBF), resulting in predominantly FCC grains with internal solidification cells, and small pockets of a mixed BCC + B2 phase microstructure in the inter-cellular regions. Early stages of ordered L1 2 precipitation was also observed within the FCC grains, containing a large fraction of low angle sub -grain boundaries. While the as-built alloy exhibited a yield strength of -600 MPa with 15% ductility at room temperature, after ex situ annealing at 800 & DEG;C for 5 hrs, the yield strength increased to -950 MPa.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Effects of process parameters on bead shape, microstructure, and mechanical properties in wire plus arc additive manufacturing of Al0.1CoCrFeNi high-entropy alloy [J].
Ahsan, Md R. U. ;
Seo, Gi-Jeong ;
Fan, Xuesong ;
Liaw, Peter K. ;
Motaman, Seyedamirhossein ;
Haase, Christian ;
Kim, Duck Bong .
JOURNAL OF MANUFACTURING PROCESSES, 2021, 68 :1314-1327
[2]   Multicomponent and High Entropy Alloys [J].
Cantor, Brian .
ENTROPY, 2014, 16 (09) :4749-4768
[3]   Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤2) high-entropy alloys [J].
Chou, Hsuan-Ping ;
Chang, Yee-Shyi ;
Chen, Swe-Kai ;
Yeh, Jien-Wei .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 163 (03) :184-189
[4]   Tuning the degree of chemical ordering in the solid solution of a complex concentrated alloy and its impact on mechanical properties [J].
Dasari, S. ;
Jagetia, A. ;
Sharma, A. ;
Nartu, M. S. K. K. Y. ;
Soni, V ;
Gwalani, B. ;
Gorsse, S. ;
Banerjee, R. .
ACTA MATERIALIA, 2021, 212
[5]  
Fleischer R., 1964, Strengthening of Metals
[6]   In situ strengthening of CrMnFeCoNi high-entropy alloy with Al realized by laser additive manufacturing [J].
Gao, Xiaoyu ;
Yu, Zejiang ;
Hu, Weihua ;
Lu, Yi ;
Zhu, Zeyu ;
Ji, Yu ;
Lu, Yunzhuo ;
Qin, Zuoxiang ;
Lu, Xing .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 847
[7]   Composition inhomogeneity reduces cracking susceptibility in additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy produced by laser powder bed fusion [J].
Geng, Zhaowen ;
Chen, Chao ;
Li, Ruidi ;
Luo, Jinru ;
Zhou, Kechao .
ADDITIVE MANUFACTURING, 2022, 56
[8]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534
[9]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[10]   High density of strong yet deformable intermetallic nanorods leads to an excellent room temperature strength-ductility combination in a high entropy alloy [J].
Gwalani, Bharat ;
Dasari, Sriswaroop ;
Sharma, Abhishek ;
Soni, Vishal ;
Shukla, Shivakant ;
Jagetia, Abhinav ;
Agrawal, Priyanshi ;
Mishra, Rajiv S. ;
Banerjee, Rajarshi .
ACTA MATERIALIA, 2021, 219