Classifying Conduct Disorder Using a Biopsychosocial Model and Machine Learning Method

被引:12
作者
Chan, Lena [1 ]
Simmons, Cortney [1 ]
Tillem, Scott [2 ]
Conley, May [1 ]
Brazil, Inti A. [3 ,4 ]
Baskin-Sommers, Arielle [1 ]
机构
[1] Yale Univ, Dept Psychol, New Haven, CT 06520 USA
[2] Univ Michigan Ann Arbor, Dept Psychol, Ann Arbor, MI USA
[3] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
[4] Forens Psychiat Ctr Pompestichting, Nijmegen, Netherlands
基金
美国国家卫生研究院;
关键词
OPPOSITIONAL DEFIANT DISORDER; LIFE-COURSE-PERSISTENT; NIH TOOLBOX COGNITION; ANTISOCIAL-BEHAVIOR; NEUROPSYCHOLOGICAL MEASURES; MENTAL-DISORDERS; ADHD; RISK; ODD; ADOLESCENTS;
D O I
10.1016/j.bpsc.2022.02.004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BACKGROUND:Conduct disorder (CD) is a common syndrome with far-reaching effects. Risk factors for the development of CD span social, psychological, and biological domains. Researchers note that predictive models of CD are limited if the focus is on a single risk factor or even a single domain. Machine learning methods are optimized for the extraction of trends across multidomain data but have yet to be implemented in predicting the development of CD. METHODS:Social (e.g., family, income), psychological (e.g., psychiatric, neuropsychological), and biological (e.g., resting-state graph metrics) risk factors were measured using data from the baseline visit of the Adolescent Brain Cognitive Development Study when youth were 9 to 10 years old (N = 2368). Applying a feed-forward neural network machine learning method, risk factors were used to predict CD diagnoses 2 years later. RESULTS:A model with factors that included social, psychological, and biological domains outperformed models representing factors within any single domain, predicting the presence of a CD diagnosis with 91.18% accuracy. Within each domain, certain factors stood out in terms of their relationship to CD (social: lower parental monitoring, more aggression in the household, lower income; psychological: greater attention-deficit/hyperactivity disorder and oppositional defiant disorder symptoms, worse crystallized cognition and card sorting performance; biological: disruptions in the topology of subcortical and frontoparietal networks). CONCLUSIONS:The development of an accurate, sensitive, and specific predictive model of CD has the potential to aid in prevention and intervention efforts. Key risk factors for CD appear best characterized as reflecting unpredictable, impulsive, deprived, and emotional external and internal contexts.
引用
收藏
页码:599 / 608
页数:10
相关论文
共 80 条
[11]   Classification and treatment of antisocial individuals: From behavior to biocognition [J].
Brazil, I. A. ;
van Dongen, J. D. M. ;
Maes, J. H. R. ;
Mars, R. B. ;
Baskin-Sommers, A. R. .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2018, 91 :259-277
[12]   The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites [J].
Casey, B. J. ;
Cannonier, Tariq ;
Conley, May I. ;
Cohen, Alexandra O. ;
Barch, Deanna M. ;
Heitzeg, Mary M. ;
Soules, Mary E. ;
Teslovich, Theresa ;
Dellarco, Danielle V. ;
Garavan, Hugh ;
Orr, Catherine A. ;
Wager, Tor D. ;
Banich, Marie T. ;
Speer, Nicole K. ;
Sutherland, Matthew T. ;
Riedel, Michael C. ;
Dick, Anthony S. ;
Bjork, James M. ;
Thomas, Kathleen M. ;
Chaarani, Bader ;
Mejia, Margie H. ;
Hagler, Donald J., Jr. ;
Cornejo, M. Daniela ;
Sicat, Chelsea S. ;
Harms, Michael P. ;
Dosenbach, Nico U. F. ;
Rosenberg, Monica ;
Earl, Eric ;
Bartsch, Hauke ;
Watts, Richard ;
Polimeni, Jonathan R. ;
Kuperman, Joshua M. ;
Fair, Damien A. ;
Dale, Anders M. .
DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 32 :43-54
[13]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[14]   Differential Relations Between Juvenile Psychopathic Traits and Resting State Network Connectivity [J].
Cohn, Moran D. ;
Pape, Louise E. ;
Schmaal, Lianne ;
van den Brink, Wim ;
van Wingen, Guido ;
Vermeiren, Robert R. J. M. ;
Doreleijers, Theo A. H. ;
Veltman, Dick J. ;
Popma, Arne .
HUMAN BRAIN MAPPING, 2015, 36 (06) :2396-2405
[15]   Population modeling with machine learning can enhance measures of mental health [J].
Dadi, Kamalaker ;
Varoquaux, Gael ;
Houenou, Josselin ;
Bzdok, Danilo ;
Thirion, Bertrand ;
Engemann, Denis .
GIGASCIENCE, 2021, 10 (10)
[16]  
Dwyer DB, 2018, ANNU REV CLIN PSYCHO, V14, P91, DOI [10.1146/annurev-clinpsy-032816045037, 10.1146/annurev-clinpsy-032816-045037]
[17]   Conduct disorder [J].
Fairchild, Graeme ;
Hawes, David J. ;
Frick, Paul J. ;
Copeland, William E. ;
Odgers, Candice L. ;
Franke, Barbara ;
Freitag, Christine M. ;
De Brito, Stephane A. .
NATURE REVIEWS DISEASE PRIMERS, 2019, 5 (1)
[18]   Brain Structure Abnormalities in Early-Onset and Adolescent-Onset Conduct Disorder [J].
Fairchild, Graeme ;
Passamonti, Luca ;
Hurford, Georgina ;
Hagan, Cindy C. ;
von dem Hagen, Elisabeth A. H. ;
van Goozen, Stephanie H. M. ;
Goodyer, Ian M. ;
Calder, Andrew J. .
AMERICAN JOURNAL OF PSYCHIATRY, 2011, 168 (06) :624-633
[19]   Decision Making and Executive Function in Male Adolescents with Early-Onset or Adolescence-Onset Conduct Disorder and Control Subjects [J].
Fairchild, Graeme ;
van Goozen, Stephanie H. M. ;
Stollery, Sarah J. ;
Aitken, Michael R. F. ;
Savage, Justin ;
Moore, Simon C. ;
Goodyer, Ian M. .
BIOLOGICAL PSYCHIATRY, 2009, 66 (02) :162-168
[20]   Disrupted Reinforcement Signaling in the Orbitofrontal Cortex and Caudate in Youths With Conduct Disorder or Oppositional Defiant Disorder and a High Level of Psychopathic Traits [J].
Finger, Elizabeth C. ;
Marsh, Abigail A. ;
Blair, Karina S. ;
Reid, Marguerite E. ;
Sims, Courtney ;
Ng, Pamela ;
Pine, Daniel S. ;
Blair, R. James R. .
AMERICAN JOURNAL OF PSYCHIATRY, 2011, 168 (02) :152-162