Affine Laumon Spaces and Iterated W-Algebras

被引:0
|
作者
Creutzig, Thomas [1 ]
Diaconescu, Duiliu-Emanuel [2 ]
Ma, Mingyang [3 ]
机构
[1] Univ Alberta, Dept Math & Stat, Edmonton, AB, Canada
[2] Rutgers State Univ, New High Energy Theory Ctr, New Brunswick, NJ USA
[3] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ USA
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM REDUCTION; BLOWUP;
D O I
10.1007/s00220-023-04754-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A family of vertex algebras whose universal Verma modules coincide with the cohomology of affine Laumon spaces is found. This result is based on an explicit expression for the generating function of Poincare polynomials of these spaces. There is a variant of quantum Hamiltonian reduction that realizes vertex algebras which we call iterated W-algebras and our main conjecture is that the vertex algebras associated to the affine Laumon spaces are subalgebras of iterated W-algebras.
引用
收藏
页码:2133 / 2168
页数:36
相关论文
共 50 条
  • [31] Modularity of Relatively Rational Vertex Algebras and Fusion Rules of Principal Affine W-Algebras
    Arakawa, Tomoyuki
    van Ekeren, Jethro
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) : 205 - 247
  • [32] FINITE W-ALGEBRAS
    TJIN, T
    PHYSICS LETTERS B, 1992, 292 (1-2) : 60 - 66
  • [33] Geometry of W-algebras from the affine Lie algebra point of view
    Bajnok, Z
    Nógrádi, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (23): : 4811 - 4829
  • [34] Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moeseneder
    Papi, Paolo
    Perse, Ozren
    JOURNAL OF ALGEBRA, 2018, 500 : 117 - 152
  • [35] Classical Affine W-Algebras for glN and Associated Integrable Hamiltonian Hierarchies
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (01) : 265 - 319
  • [36] Guay's affine Yangians and non-rectangular W-algebras
    Ueda, Mamoru
    ADVANCES IN MATHEMATICS, 2024, 438
  • [37] On Rationality of W-algebras
    Victor G. Kac
    Minoru Wakimoto
    Transformation Groups, 2008, 13 : 671 - 713
  • [38] Yangians and W-algebras
    Briot, C
    Ragoucy, E
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 709 - 718
  • [39] Trialities of W-algebras
    Creutzig, Thomas
    Linshaw, Andrew R.
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (01) : 69 - 194
  • [40] Quiver W-algebras
    Taro Kimura
    Vasily Pestun
    Letters in Mathematical Physics, 2018, 108 : 1351 - 1381