A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data

被引:65
作者
Amani, Shima [1 ]
Shafizadeh-Moghadam, Hossein [1 ,2 ]
机构
[1] Tarbiat Modares Univ, Dept Water Engn & Management, Tehran, Iran
[2] Tarbiat Modares Univ, Fac Agr, Tehran 1497713111, Iran
关键词
Flux towers; Land surface temperature; Surface energy balance; Water resources management; GLOBAL TERRESTRIAL EVAPOTRANSPIRATION; DIFFERENCE WATER INDEX; LATENT-HEAT FLUX; SURFACE-TEMPERATURE; CROP EVAPOTRANSPIRATION; VEGETATION INDEX; PENMAN-MONTEITH; CARBON-DIOXIDE; ENERGY-BALANCE; CLIMATE-CHANGE;
D O I
10.1016/j.agwat.2023.108324
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In the era of water scarcity and severe droughts, the accurate estimation of evapotranspiration (ET) is crucial for the efficient management of water resources, understanding hydrological and ecological processes, and comprehending the relationships between the atmosphere, hydrosphere, and biosphere. ET is a complex phenomenon influenced by a set of biophysical and environmental factors. Its estimation becomes more complicated in heterogeneous environments, demanding detailed data and accurate model calibration. Combining remote sensing imagery and machine learning (ML) models has provided a considerable capacity for estimating ET, which relaxes a number of assumptions and requires less data than traditional approaches. Satellite imagery provides influential variables for ET estimation using ML models. Nevertheless, a growing number of ML models and emerging satellite imagery has opened up a wide and complex potential before researchers. While previous studies have reviewed physical-based methods for ET estimation, this paper offers a recent decade review of the progress, challenges, and opportunities provided by the RS and ML models for the ET estimation and future outlook.
引用
收藏
页数:12
相关论文
共 194 条
[71]   Performance evaluation of FAO Penman-Monteith and best alternative models for estimating reference evapotranspiration in Bangladesh [J].
Islam, Shakibul ;
Alam, A. K. M. Rashidul .
HELIYON, 2021, 7 (07)
[72]   Estimation of Daily Potential Evapotranspiration in Real-Time from GK2A/AMI Data Using Artificial Neural Network for the Korean Peninsula [J].
Jang, Jae-Cheol ;
Sohn, Eun-Ha ;
Park, Ki-Hong ;
Lee, Soobong .
HYDROLOGY, 2021, 8 (03)
[73]  
Jensen M. E., 1963, Journal of the Irrigation and Drainage Division, V89, P15, DOI DOI 10.1061/JRCEA4.0000287
[74]   A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations [J].
Jiang, L ;
Islam, S .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (17) :2773-2776
[75]   Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China [J].
Jiang, Xuelian ;
Kang, Shaozhong ;
Tong, Ling ;
Li, Fusheng .
JOURNAL OF HYDROLOGY, 2016, 538 :194-207
[76]   Development of a two-band enhanced vegetation index without a blue band [J].
Jiang, Zhangyan ;
Huete, Alfredo R. ;
Didan, Karnel ;
Miura, Tomoaki .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) :3833-3845
[77]   Evolutionary algorithm for reference evapotranspiration analysis [J].
Jovic, Srdjan ;
Nedeljkovic, Blagoje ;
Golubovic, Zoran ;
Kostic, Nikola .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 150 :1-4
[78]   Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model [J].
Jung, M. ;
Reichstein, M. ;
Bondeau, A. .
BIOGEOSCIENCES, 2009, 6 (10) :2001-2013
[79]   Recent decline in the global land evapotranspiration trend due to limited moisture supply [J].
Jung, Martin ;
Reichstein, Markus ;
Ciais, Philippe ;
Seneviratne, Sonia I. ;
Sheffield, Justin ;
Goulden, Michael L. ;
Bonan, Gordon ;
Cescatti, Alessandro ;
Chen, Jiquan ;
de Jeu, Richard ;
Dolman, A. Johannes ;
Eugster, Werner ;
Gerten, Dieter ;
Gianelle, Damiano ;
Gobron, Nadine ;
Heinke, Jens ;
Kimball, John ;
Law, Beverly E. ;
Montagnani, Leonardo ;
Mu, Qiaozhen ;
Mueller, Brigitte ;
Oleson, Keith ;
Papale, Dario ;
Richardson, Andrew D. ;
Roupsard, Olivier ;
Running, Steve ;
Tomelleri, Enrico ;
Viovy, Nicolas ;
Weber, Ulrich ;
Williams, Christopher ;
Wood, Eric ;
Zaehle, Soenke ;
Zhang, Ke .
NATURE, 2010, 467 (7318) :951-954
[80]   Downscaling and forecasting of evapotranspiration using a synthetic model of wavelets and support vector machines [J].
Kaheil, Yasir H. ;
Rosero, Enrique ;
Gill, M. Kashif ;
McKee, Mac ;
Bastidas, Luis A. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (09) :2692-2707