Dynamic task offloading for digital twin-empowered mobile edge computing via deep reinforcement learning

被引:41
|
作者
Chen, Ying [1 ]
Gu, Wei [1 ]
Xu, Jiajie [1 ]
Zhang, Yongchao [2 ]
Min, Geyong [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Comp, Beijing 100101, Peoples R China
[2] Univ Exeter, Exeter EX4 4QF, England
关键词
Task analysis; Internet of Things; Energy efficiency; Multi-access edge computing; Batteries; Artificial intelligence; Servers; mobile edge computing; deep reinforcement learning; digital twin; OPTIMIZATION; ARCHITECTURE; ALLOCATION; NETWORK;
D O I
10.23919/JCC.ea.2022-0372.202302
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Limited by battery and computing resources, the computing-intensive tasks generated by Internet of Things (IoT) devices cannot be processed all by themselves. Mobile edge computing (MEC) is a suitable solution for this problem, and the generated tasks can be offloaded from IoT devices to MEC. In this paper, we study the problem of dynamic task offloading for digital twin-empowered MEC. Digital twin techniques are applied to provide information of environment and share the training data of agent deployed on IoT devices. We formulate the task offloading problem with the goal of maximizing the energy efficiency and the workload balance among the ESs. Then, we reformulate the problem as an MDP problem and design DRL-based energy efficient task offloading (DEETO) algorithm to solve it. Comparative experiments are carried out which show the superiority of our DEETO algorithm in improving energy efficiency and balancing the workload.
引用
收藏
页码:164 / 175
页数:12
相关论文
共 50 条
  • [21] Task Offloading for UAV-based Mobile Edge Computing via Deep Reinforcement Learning
    Li, Jun
    Liu, Qian
    Wu, Pingyang
    Shu, Feng
    Jin, Shi
    2018 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2018, : 798 - 802
  • [22] Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing
    Xiaohu Gao
    Mei Choo Ang
    Sara A. Althubiti
    Journal of Grid Computing, 2023, 21
  • [23] Digital Twin-Aided Intelligent Offloading With Edge Selection in Mobile Edge Computing
    Tan Do-Duy
    Huynh, Dang Van
    Dobre, Octavia A.
    Canberk, Berk
    Duong, Trung Q.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (04) : 806 - 810
  • [24] Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing
    Gao, Xiaohu
    Ang, Mei Choo
    Althubiti, Sara A.
    JOURNAL OF GRID COMPUTING, 2023, 21 (04)
  • [25] Dependency-aware task offloading based on deep reinforcement learning in mobile edge computing networks
    Li, Junnan
    Yang, Zhengyi
    Chen, Kai
    Ming, Zhao
    Li, Xiuhua
    Fan, Qilin
    Hao, Jinlong
    Cheng, Luxi
    WIRELESS NETWORKS, 2024, 30 (06) : 5519 - 5531
  • [26] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254
  • [27] Adaptive Service Function Chain Scheduling in Mobile Edge Computing via Deep Reinforcement Learning
    Wang, Tianfeng
    Zu, Jiachen
    Hu, Guyu
    Peng, Dongyang
    IEEE ACCESS, 2020, 8 : 164922 - 164935
  • [28] Deep Reinforcement Learning-Based Computation Offloading for Mobile Edge Computing in 6G
    Sun, Haifeng
    Wang, Jiawei
    Yong, Dongping
    Qin, Mingwei
    Zhang, Ning
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7482 - 7493
  • [29] Adaptive Task Offloading in Coded Edge Computing: A Deep Reinforcement Learning Approach
    Nguyen Van Tam
    Nguyen Quang Hieu
    Nguyen Thi Thanh Van
    Nguyen Cong Luong
    Niyato, Dusit
    Kim, Dong In
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3878 - 3882
  • [30] Task offloading in Multiple-Services Mobile Edge Computing: A deep reinforcement learning algorithm
    Peng, Ziyu
    Wang, Gaocai
    Nong, Wang
    Qiu, Yu
    Huang, Shuqiang
    COMPUTER COMMUNICATIONS, 2023, 202 : 1 - 12