Machine learning assisted design of aluminum-lithium alloy with high specific modulus and specific strength

被引:27
|
作者
Li, Huiyu [1 ,2 ,3 ]
Li, Xiwu [1 ,2 ,3 ]
Li, Yanan [1 ,2 ,3 ]
Xiao, Wei [1 ,2 ,3 ]
Wen, Kai [1 ,2 ,3 ]
Li, Zhihui [1 ,3 ]
Zhang, Yongan [1 ,2 ,3 ]
Xiong, Baiqing [1 ,3 ]
机构
[1] GRINM Grp Co LTD, State Key Lab Nonferrous Met & Proc, Beijing 100088, Peoples R China
[2] GRIMAT Engn Inst Co LTD, Beijing 101407, Peoples R China
[3] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
关键词
Al-Li alloys; Machine learning; Specific modulus; Specific strength; Alloy design; HIGH-ENTROPY ALLOYS; INFORMATICS APPROACH; ELASTIC-MODULUS; LI ALLOY; ZR; PREDICTION; EVOLUTION; DISCOVERY; KINETICS;
D O I
10.1016/j.matdes.2022.111483
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Advanced aluminum-lithium alloys are the key structural materials urgently needed for the development of light-weighted aircraft in the aerospace field. In this study, we employ a machine learning approach accompanied by domain knowledge to realize the accelerated design of aluminum-lithium alloy with high specific modulus and specific strength by identifying an optimal combination of key features through a three-step feature filtering of datasets containing 145 alloys. The maximum specific modulus in the experimental alloys that screened from the predicted results increases by 4 % compared with the maximum specific modulus in the comparative dataset. The specific modulus of the designed alloy with the best comprehensive performance increased by 12.6 % compared with the widely used 2195-T8 alloy while maintaining a similar specific strength. Machine learning shows appealing feasibility and reliability in the field of materials design.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Composition Design of High Strength ODS Alloy Based on Machine Learning
    Bai B.
    Zheng Q.
    Ren S.
    Zhang C.
    Yang W.
    Hu C.
    Yang, Wen (ywhyangwen@163.com), 1600, Atomic Energy Press (54): : 678 - 682
  • [12] A feasibility study of machine learning-assisted alloy design using wrought aluminum alloys as an example
    Soofi, Yasaman J.
    Rahman, Md Asad
    Gu, Yijia
    Liu, Jinling
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 215
  • [13] Machine Learning Assisted Design of High Thermal Conductivity and High Strength Mg Alloys
    Liu, Huafeng
    Nakata, Taiki
    Xu, Chao
    Zhao, Deli
    Zhu, Lin
    Qu, Nan
    Ding, Haoyang
    Deng, Kunkun
    Nie, Kaibo
    Liu, Tao
    Tang, Guangze
    Wang, Xiaojun
    Kamado, Shigeharu
    Geng, Lin
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2025, 56 (05): : 1534 - 1551
  • [14] Design of high strength medium-Mn steel using machine learning
    Lee, Jin-Young
    Kim, Minjeong
    Lee, Young -Kook
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 843
  • [15] Aluminum Alloy Design by La Amount through Machine Learning and Experimental Verification
    Kim, Kyeonghun
    Park, Jong-Goo
    Yang, HaeWoong
    Heo, Uro
    Kang, NamHyun
    KOREAN JOURNAL OF METALS AND MATERIALS, 2024, 62 (07): : 524 - 532
  • [16] Strength Estimation of Aluminum Alloy using Machine Learning of NDT Data
    Ryu, Seong-Cheol
    Jhang, Kyung-Young
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2023, 43 (03) : 195 - 202
  • [17] Machine Learning Assisted Tensile Strength Prediction and Optimization of Ti Alloy
    Fatriansyah, Jaka Fajar
    Aqila, Muhamad Rafi
    Suhariadi, Iping
    Federico, Andreas
    Ajiputro, Dzaky Iman
    Pradana, Agrin Febrian
    Andreano, Yossi
    Rizky, Muhammad Ali Yafi
    Dhaneswara, Donanta
    Lockman, Zainovia
    Hur, Su-Mi
    IEEE ACCESS, 2024, 12 : 119660 - 119670
  • [18] Machine learning accelerated design of magnesium alloys with high strength and high ductility
    Zhu, Guosong
    Du, Xiaoming
    Sun, Dandan
    MATERIALS TODAY COMMUNICATIONS, 2025, 44
  • [19] RT ECAP and rolling bestow high strength and good ductility on a low lithium aluminum alloy
    Chen, Yumeng
    Wu, Yuna
    Li, Yun
    Peng, Zhiyang
    Liu, Huan
    Ma, Aibin
    Jiang, Jinghua
    Yuan, Ting
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 5561 - 5574
  • [20] Machine learning-assisted design of high-entropy alloys for optimal strength and ductility
    Singh, Shailesh Kumar
    Mahanta, Bashista Kumar
    Rawat, Pankaj
    Kumar, Sanjeev
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1007