Optomechanical Cooling and Inertial Sensing at Low Frequencies

被引:2
作者
Zhang, Yanqi [1 ,2 ]
Hines, Adam [1 ]
Wilson, Dalziel J. [2 ]
Guzman, Felipe [1 ]
机构
[1] Texas A&M Univ, Aerosp Engn & Phys, College Stn, TX 77843 USA
[2] Univ Arizona, James C Wyant Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
RADIATION-PRESSURE; INSTABILITY;
D O I
10.1103/PhysRevApplied.19.054004
中图分类号
O59 [应用物理学];
学科分类号
摘要
An inertial sensor design is proposed in this paper to achieve high sensitivity and large dynamic range in the subhertz-frequency regime. High acceleration sensitivity is obtained by combining optical cav-ity readout systems with monolithically fabricated mechanical resonators. A high-sensitivity heterodyne interferometer simultaneously monitors the test mass with an extensive dynamic range for low-stiffness resonators. The bandwidth is tuned by optical feedback cooling to the test mass via radiation pressure inter-action using an intensity-modulated laser. The transfer gain of the feedback system is analyzed to optimize system parameters towards the minimum cooling temperature that can be achieved. To practically imple-ment the inertial sensor, we propose a dynamic cooling mechanism to improve cooling efficiency while operating at low optical power levels. The overall system layout presents an integrated design that is compact and lightweight.
引用
收藏
页数:10
相关论文
共 40 条
  • [11] Efficient optomechanical cooling in one-dimensional interferometers
    Domokos, P.
    Xuereb, A.
    Horak, P.
    Freegarde, T.
    LASER REFRIGERATION OF SOLIDS IV, 2011, 7951
  • [12] Nonlinearity-induced limitations on cooling in optomechanical systems
    Djorwe, P.
    Mbe, J. H. Talla
    Engo, S. G. Nana
    Woafo, P.
    PHYSICAL REVIEW A, 2012, 86 (04):
  • [13] Role of optical density of states in Brillouin optomechanical cooling
    Kim, Seunghwi
    Bahl, Gaurav
    OPTICS EXPRESS, 2017, 25 (02): : 776 - 784
  • [14] Quantum-mechanical theory of optomechanical Brillouin cooling
    Tomes, Matthew
    Marquardt, Florian
    Bahl, Gaurav
    Carmon, Tal
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [15] Thermo-optomechanical oscillator for sensing applications
    Deng, Yang
    Liu, Fenfei
    Leseman, Zayd C.
    Hossein-Zadeh, Mani
    OPTICS EXPRESS, 2013, 21 (04): : 4653 - 4664
  • [16] Quantum sensing with milligram scale optomechanical systems
    Michimura, Yuta
    Komori, Kentaro
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (06)
  • [17] Optomechanical sideband cooling of a thin membrane within a cavity
    Karuza, M.
    Molinelli, C.
    Galassi, M.
    Biancofiore, C.
    Natali, R.
    Tombesi, P.
    Di Giuseppe, G.
    Vitali, D.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [18] Sensing dispersive and dissipative forces by an optomechanical cavity
    Suchoi, Oren
    Buks, Eyal
    EPL, 2016, 115 (01)
  • [19] Normal mode splitting and cooling in strong coupling optomechanical cavity
    Chen Hua-Jun
    Mi Xian-Wu
    ACTA PHYSICA SINICA, 2011, 60 (12)
  • [20] Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state
    Riviere, R.
    Deleglise, S.
    Weis, S.
    Gavartin, E.
    Arcizet, O.
    Schliesser, A.
    Kippenberg, T. J.
    PHYSICAL REVIEW A, 2011, 83 (06):