Magnetic Measurements Applied to Energy Storage

被引:24
作者
Li, Xiangkun [1 ]
Zhang, Leqing [1 ]
Liu, Hengjun [1 ]
Li, Qiang [1 ]
Hou, Yanglong [2 ]
机构
[1] Qingdao Univ, Weihai Innovat Res Inst, Coll Phys, Qingdao 266071, Peoples R China
[2] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Magnetoelect Mat & Devices, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
alkali metal ion batteries; electrochemical mechanism; electronic structure; energy storage; magnetic measurement; NEGATIVE ELECTRODE MATERIAL; ION BATTERY CATHODE; X-RAY-DIFFRACTION; LI-ION; IN-SITU; ELECTROCHEMICAL-BEHAVIOR; POSITIVE-ELECTRODE; ANIONIC REDOX; HIGH-CAPACITY; OXYGEN-REDOX;
D O I
10.1002/aenm.202300927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
How to increase energy storage capability is one of the fundamental questions, it requires a deep understanding of the electronic structure, redox processes, and structural evolution of electrode materials. These thorny problems now usually involve spin-orbit, spin-related electron configuration, etc., which cannot be probed using conventional testing techniques. Considering the intimate connection between spin and magnetic properties, using electron spin as a probe, magnetic measurements make it possible to analyze energy storage processes from the perspective of spin and magnetism. Owing to the capability of characterizing spin properties and high compatibility with the energy storage field, magnetic measurements are proven to be powerful tools for contributing to the progress of energy storage. In this review, several typical applications of magnetic measurements in alkali metal ion batteries research to emphasize the intimate connection between the magnetic properties and electronic structure, which is associated with the electrochemical performance of the electrode materials, are presented. Finally, the current challenges of magnetic measurements and the prospects for enhanced analysis of energy storage systems are discussed.
引用
收藏
页数:36
相关论文
共 227 条
[31]   Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode [J].
de Boisse, Benoit Mortemard ;
Liu, Guandong ;
Ma, Jiangtao ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Kiuchi, Hisao ;
Harada, Yoshihisa ;
Kikkawa, Jun ;
Kobayashi, Yoshio ;
Okubo, Masashi ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2016, 7
[32]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[33]   Effect of iron on the electrochemical behaviour of lithium nickelate:: from LiNiO2 to 2D-LiFeO2 [J].
Delmas, C ;
Prado, G ;
Rougier, A ;
Suard, E ;
Fournès, L .
SOLID STATE IONICS, 2000, 135 (1-4) :71-79
[34]   Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life [J].
Dong, Yifan ;
Wang, Bingliang ;
Zhao, Kangning ;
Yu, Yanhao ;
Wang, Xudong ;
Mai, Liqiang ;
Jin, Song .
NANO LETTERS, 2017, 17 (09) :5740-5746
[35]   Surface magnetoelectric effect in ferromagnetic metal films [J].
Duan, Chun-Gang ;
Velev, Julian P. ;
Sabirianov, R. F. ;
Zhu, Ziqiang ;
Chu, Junhao ;
Jaswal, S. S. ;
Tsymbal, E. Y. .
PHYSICAL REVIEW LETTERS, 2008, 101 (13)
[36]   Application of in situ Mossbauer effect methods for the study of electrochemical reactions in lithium-ion battery electrode materials [J].
Dunlap, RA ;
Mao, O ;
Dahn, JR .
PHYSICAL REVIEW B, 1999, 59 (05) :3494-3500
[37]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[38]   Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging [J].
Dutoit, Charles-Emmanuel ;
Tang, Mingxue ;
Gourier, Didier ;
Tarascon, Jean-Marie ;
Vezin, Herve ;
Salager, Elodie .
NATURE COMMUNICATIONS, 2021, 12 (01)
[39]   A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution [J].
El Mofid, Wassima ;
Ivanov, Svetlozar ;
Konkin, Alexander ;
Bund, Andreas .
JOURNAL OF POWER SOURCES, 2014, 268 :414-422
[40]   Chemically Bonded TiO2-Bronze Nanosheet/Reduced Graphene Oxide Hybrid for High-Power Lithium Ion Batteries [J].
Etacheri, Vinodkumar ;
Yourey, Joseph E. ;
Bartlett, Bart M. .
ACS NANO, 2014, 8 (02) :1491-1499