Magnetic Measurements Applied to Energy Storage

被引:23
作者
Li, Xiangkun [1 ]
Zhang, Leqing [1 ]
Liu, Hengjun [1 ]
Li, Qiang [1 ]
Hou, Yanglong [2 ]
机构
[1] Qingdao Univ, Weihai Innovat Res Inst, Coll Phys, Qingdao 266071, Peoples R China
[2] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Magnetoelect Mat & Devices, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
alkali metal ion batteries; electrochemical mechanism; electronic structure; energy storage; magnetic measurement; NEGATIVE ELECTRODE MATERIAL; ION BATTERY CATHODE; X-RAY-DIFFRACTION; LI-ION; IN-SITU; ELECTROCHEMICAL-BEHAVIOR; POSITIVE-ELECTRODE; ANIONIC REDOX; HIGH-CAPACITY; OXYGEN-REDOX;
D O I
10.1002/aenm.202300927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
How to increase energy storage capability is one of the fundamental questions, it requires a deep understanding of the electronic structure, redox processes, and structural evolution of electrode materials. These thorny problems now usually involve spin-orbit, spin-related electron configuration, etc., which cannot be probed using conventional testing techniques. Considering the intimate connection between spin and magnetic properties, using electron spin as a probe, magnetic measurements make it possible to analyze energy storage processes from the perspective of spin and magnetism. Owing to the capability of characterizing spin properties and high compatibility with the energy storage field, magnetic measurements are proven to be powerful tools for contributing to the progress of energy storage. In this review, several typical applications of magnetic measurements in alkali metal ion batteries research to emphasize the intimate connection between the magnetic properties and electronic structure, which is associated with the electrochemical performance of the electrode materials, are presented. Finally, the current challenges of magnetic measurements and the prospects for enhanced analysis of energy storage systems are discussed.
引用
收藏
页数:36
相关论文
共 227 条
[1]   Structural,magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries [J].
Abdel-Ghany, A. ;
Zaghib, K. ;
Gendron, F. ;
Mauger, A. ;
Julien, C. M. .
ELECTROCHIMICA ACTA, 2007, 52 (12) :4092-4100
[2]   Fe3+ and Ni3+ impurity distribution and electrochemical performance of LiCoO2 electrode materials for lithium ion batteries [J].
Alcantara, R. ;
Ortiz, G. ;
Tirado, J. L. ;
Stoyanova, R. ;
Zhecheva, E. ;
Ivanova, Sv. .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :494-501
[3]   Lithium insertion mechanism in Sb-based electrode materials from 121Sb Mossbauer spectrometry [J].
Aldon, L ;
Garcia, A ;
Olivier-Fourcade, J ;
Jumas, JC ;
Fernández-Madrigal, FJ ;
Lavela, P ;
Vicente, CP ;
Tirado, JL .
JOURNAL OF POWER SOURCES, 2003, 119 :585-590
[4]   Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy [J].
Allan, Phoebe K. ;
Griffin, John M. ;
Darwiche, Ali ;
Borkiewicz, Olaf J. ;
Wiaderek, Kamila M. ;
Chapman, Karena W. ;
Morris, Andrew J. ;
Chupas, Peter J. ;
Monconduit, Laure ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (07) :2352-2365
[5]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[6]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[7]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[8]   Reining in dissolved transition-metal ions [J].
Asl, Hooman Yaghoobnejad ;
Manthiram, Arumugam .
SCIENCE, 2020, 369 (6500) :140-141
[9]   Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries [J].
Assat, Gaurav ;
Tarascon, Jean-Marie .
NATURE ENERGY, 2018, 3 (05) :373-386
[10]  
Atkins D., 2021, Adv. Energy Mater, V12